
9 Fixed Effects

library(plm) # estimating panel models
library(lmtest) # regression inference
library(stargazer) # regression outputs

9.1 Time-constant Variables

Panel data allows us to control for variables that are constant over time, even if these variables
are not directly observable.

Consider a basic panel regression model:

𝑌𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑍𝑖 + 𝑢𝑖𝑡. (9.1)

Here, 𝑍𝑖 represents a variable that does not change over time and is specific to an individual
(e.g., gender, ethnicity, parental education).

For simplicity, assume here that observations are only available for two time periods (𝑡 = 1
and 𝑡 = 2). We can focus on the changes between these periods.

Subtracting the right-hand side of Equation 9.1 at 𝑡 = 1 from 𝑡 = 2 gives

𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑍𝑖 + 𝑢𝑖2 − (𝛽1 + 𝛽2𝑋𝑖1 + 𝛽3𝑍𝑖 + 𝑢𝑖1)
= 𝛽2Δ𝑋𝑖2 + Δ𝑢𝑖2.

The symbol Δ represents first-differencing, i.e. Δ𝑋𝑖2 = 𝑋𝑖2 − 𝑋𝑖1 and Δ𝑢𝑖2 = 𝑢𝑖2 − 𝑢𝑖1.

By first-differencing both sides of Equation 9.1, our model becomes

Δ𝑌𝑖2 = 𝛽2Δ𝑋𝑖2 + Δ𝑢𝑖2. (9.2)

𝛽1 and 𝛽3𝑍𝑖 do not appear in the transformed model Equation 9.2 because they are time-
constant and cancel out.

In this differenced model, 𝛽2 can be estimated by regressing Δ𝑌𝑖2 on Δ𝑋𝑖2 without an inter-
cept. This regression isolates the marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡 conditional on any unobserved
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individual characteristics like 𝑍𝑖. 𝛽2 is the marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡 given the same
individual-specific time-constant characteristics.

We can control for any time-constant variable without actually observing it. This is a remark-
able advantage over conventional cross-sectional regression or pooled panel regression.

We may combine the terms 𝛽1 and 𝛽3𝑍𝑖 and define the individual-specific effect 𝛼𝑖 =
𝛽1 + 𝛽3𝑍𝑖. The term 𝛼𝑖 is also called individual fixed effect. The fixed effect cancels out
after taking first differences.

9.2 Fixed Effects Regression

Consider a panel dataset with dependent variable 𝑌𝑖𝑡, a vector of 𝑘 independent variables 𝑋𝑋𝑋𝑖𝑡,
and an individual fixed effect 𝛼𝑖 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

Because 𝛼𝑖 already represents any time-constant variable of individual 𝑖, we assume that all
variables in 𝑋𝑋𝑋𝑖𝑡 are time-varying. That is, 𝑋𝑋𝑋𝑖𝑡 neither contains an intercept nor any time-
constant variables like gender, birthplace, etc.

Fixed-effects Regression

The fixed-effects regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 = 1, … , 𝑇 is

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡, (9.3)

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error term
for individual 𝑖 at time 𝑡.
The fixed effects regression assumptions are:

• (A1-fe) conditional mean independence: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0.

• (A2-fe) random sampling: (𝛼𝑖, 𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 ) are i.i.d. draws from their
joint population distribution for 𝑖 = 1, … , 𝑛.

• (A3-fe) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖𝑡] < ∞, 0 < 𝐸[𝑢4

𝑖𝑡] < ∞.

• (A4-fe) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.
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9.3 Differenced Estimator

The first-differencing transformation can be used to estimate Equation 9.3:

Δ𝑌𝑖𝑡 = 𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1, Δ𝑋𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖,𝑡 − 𝑋𝑋𝑋𝑖,𝑡−1.

Taking first differences on both sides of Equation 9.3 implies

Δ𝑌𝑖𝑡 = (Δ𝑋𝑋𝑋𝑖𝑡)′𝛽𝛽𝛽 + Δ𝑢𝑖𝑡, (9.4)

where Δ𝑢𝑖𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1. Notice that the fixed effect 𝛼𝑖 cancels out.

Hence, we can apply the OLS principle to Equation 9.4 to estimate 𝛽𝛽𝛽. We regress the dif-
ferenced dependent variable Δ𝑌𝑖𝑡 on the differenced regressors Δ𝑋𝑋𝑋𝑖𝑡 for 𝑖 = 1, … , 𝑛 and
𝑡 = 2, … , 𝑇 .

A problem with this differenced estimator is that the transformed error term Δ𝑢𝑖𝑡 defines an
artificial correlation structure, which makes the estimator non-optimal. Δ𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡
is correlated with Δ𝑢𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1 through 𝑢𝑖,𝑡.

data(Grunfeld, package="plm")
fit.diff = plm(inv ~ capital-1,

index = c("firm", "year"),
effect = "individual",
model = "fd",
data=Grunfeld)

fit.diff

Model Formula: inv ~ capital - 1

Coefficients:
capital
0.23078

9.4 Within Estimator

An efficient estimator can be obtained by a different transformation. The idea is to consider
the individual specific means

𝑌 𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑌𝑖𝑡, 𝑋𝑋𝑋𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡, 𝑢𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖𝑡.
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Taking the means of both sides of Equation 9.3 implies

𝑌 𝑖⋅ = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅. (9.5)

Then, subtracting Equation 9.5 from Equation 9.3 removes the fixed effect 𝛼𝑖 from the equa-
tion:

𝑌𝑖𝑡 − 𝑌 𝑖⋅ = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢𝑖⋅).

The deviations from the individual specific means are called within transformations:

̇𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅, 𝑋̇𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅, 𝑢̇𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅

The within-transfromed model equation is

̇𝑌𝑖𝑡 = 𝑋̇𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢̇𝑖𝑡. (9.6)

Hence, to estimate 𝛽𝛽𝛽, we regress the within-transformed dependent variable ̇𝑌𝑖𝑡 on the within-
transformed regressors 𝑋̇𝑋𝑋𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The within estimator is also called fixed effects estimator:

̂𝛽𝛽𝛽fe = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡 ̇𝑌𝑖𝑡).

fit.fe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "individual",
model = "within",
data=Grunfeld)

fit.fe

Model Formula: inv ~ capital

Coefficients:
capital
0.37075

Under (A2-fe), the collection of the within-transformed variables if individual 𝑖,

( ̇𝑌𝑖1, … , ̇𝑌𝑖𝑇 , 𝑋̇𝑋𝑋𝑖1, … ,𝑋̇𝑋𝑋𝑖𝑇 , 𝑢̇𝑖1, … , 𝑢̇𝑖𝑇 ),

forms an i..i.d. sequence for 𝑖 = 1, … , 𝑛. The within-transformed variables satisfy (A1-pool)–
(A4-pool).
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Hence, we can apply the cluster-robust covariance matrix estimator of the pooled regression
to the within-transformed variables:

𝑉𝑉𝑉 fe = (𝑋̇𝑋𝑋′𝑋̇𝑋𝑋)−1
𝑁

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋̇𝑋𝑋𝑖𝑡𝑢̂𝑖𝑡)
′
(𝑋̇𝑋𝑋′𝑋̇𝑋𝑋)−1,

where 𝑢̂𝑖𝑡 now represents the residuals of ̂𝛽𝛽𝛽fe, and 𝑋̇𝑋𝑋′𝑋̇𝑋𝑋 = ∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝑋̇𝑋𝑋𝑖𝑡𝑋̇𝑋𝑋
′
𝑖𝑡

## cluster-robust covariance matrix
Vfe = vcovHC(fit.fe)
Vfe

capital
capital 0.003796144
attr(,"cluster")
[1] "group"

## cluster-robust standard error
sqrt(Vfe)

capital
capital 0.06161285
attr(,"cluster")
[1] "group"

## t-test
coeftest(fit.fe, vcov. = Vfe)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
capital 0.370750 0.061613 6.0174 9.018e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.5 Time Fixed Effects

While individual-specific fixed effects allow to control for variables that are constant over
time but vary across individuals, we can also control for variables that are constant across
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individuals but vary over time. For example, if new government regulations are introduced at
a certain point in time that affect all individuals.

We denote time fixed effects by 𝜆𝑡. The time effects only regression equation is

𝑌𝑖𝑡 = 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡. (9.7)

Here, 𝑋𝑋𝑋𝑖𝑡 does not contain any variable that is the same for all individuals, because these
variables are captured by the time fixed effect.

To remove 𝜆𝑡 from the equation, we can subtract time specific means on both sides:

𝑌𝑖𝑡 − 𝑌 ⋅𝑡 = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢⋅𝑡).
The time specific means are

𝑌 ⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑡, 𝑋𝑋𝑋⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑡, 𝑢⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑢𝑖𝑡.

Hence, we regress 𝑌𝑖𝑡 − 𝑌 ⋅𝑡 on 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡 to estimate 𝛽𝛽𝛽 in Equation 9.7.

fit.timefe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "time",
model = "within",
data=Grunfeld)

fit.timefe

Model Formula: inv ~ capital

Coefficients:
capital
0.53826

9.6 Two-way Fixed Effects

We may include both individual fixed effects and time fixed effects. The two-way fixed effects
regression equation is

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡. (9.8)

Note that 𝜆𝑡 and 𝛼𝑖 capture any variable that is the same for all individuals or is time constant.
Therefore, the variables in 𝑋𝑋𝑋𝑖𝑡 must vary both across individuals and over time.

We can use a combination of the different transformations to remove the fixed effects.
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• Individual specific mean:
𝑌 𝑖⋅ = 𝛼𝑖 + 𝜆 + 𝑋𝑋𝑋′

𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅,
where 𝜆 = 1

𝑇 ∑𝑇
𝑡=1 𝜆𝑡.

• Time specific mean:
𝑌 ⋅𝑡 = 𝛼 + 𝜆𝑡 + 𝑋𝑋𝑋′

⋅𝑡𝛽𝛽𝛽 + 𝑢⋅𝑡,
where 𝛼 = 1

𝑛 ∑𝑛
𝑖=1 𝛼𝑖.

• Total mean:

𝑌 = 1
𝑛𝑇

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑌𝑖𝑡 = 𝛼 + 𝜆 + 𝑋𝑋𝑋′𝛽𝛽𝛽 + 𝑢,

where 𝑋𝑋𝑋 = 1
𝑛𝑇 ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡 and 𝑢 = 1

𝑛𝑇 ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑢𝑖𝑡.

To eliminate the individual and time fixed effects in Equation 9.8, we use the two-way trans-
formation:

̈𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅ − 𝑌 ⋅𝑡 + 𝑌
𝑋̈𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅ − 𝑋𝑋𝑋⋅𝑡 + 𝑋𝑋𝑋
𝑢̈𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅ − 𝑢⋅𝑡 + 𝑢.

Applying the two-way transformation on both sides of Equation 9.8 gives

̈𝑌𝑖𝑡 = 𝑋̈𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢̈𝑖𝑡. (9.9)

Hence, we estimate 𝛽𝛽𝛽 by regressing ̈𝑌𝑖𝑡 on 𝑋̈𝑋𝑋𝑖𝑡.

fit.2wayfe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "twoways",
model = "within",
data=Grunfeld)

fit.2wayfe

Model Formula: inv ~ capital

Coefficients:
capital
0.4138

Similarly to the pooled and fixed effects estimator, we can use the cluster-robust covariance
matrix estimator and cluster-robust standard errors.
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## cluster-robust covariance matrix
V2way = vcovHC(fit.2wayfe)
V2way

capital
capital 0.003241852
attr(,"cluster")
[1] "group"

## cluster-robust standard error
sqrt(Vfe)

capital
capital 0.06161285
attr(,"cluster")
[1] "group"

## t-test
coeftest(fit.2wayfe, vcov. = V2way)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
capital 0.413802 0.056937 7.2677 1.268e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.7 Comparison of panel models

The fixed effects estimators are asymptotically normal under assumptions (A1-fe)–(A4-fe), and
the clustered standard errors are consistent.

fit.pool1 = lm(inv~capital, data=Grunfeld)
fit.pool2 = plm(inv~capital,

index = c("firm", "year"),
model = "pooling",
data=Grunfeld)
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cluster_se = list(
sqrt(diag(vcovHC(fit.pool1))),
sqrt(diag(vcovHC(fit.pool2))),
sqrt(diag(vcovHC(fit.fe))),
sqrt(diag(vcovHC(fit.timefe))),
sqrt(diag(vcovHC(fit.2wayfe)))

)

stargazer_output = stargazer(fit.pool1, fit.pool2, fit.fe, fit.timefe, fit.2wayfe,
se = cluster_se,
add.lines=list(

c("Firm FE", "No", "No","Yes","No","Yes"),
c("Year FE", "No", "No","No","Yes","Yes"),
c("Clustered SE", "No", "Yes", "Yes", "Yes", "Yes")

),
type="latex",
omit.stat = "f", df=FALSE,
dep.var.labels="Gross Investment",
covariate.labels = "Capital Stock",
header = FALSE,
table.placement = "!h")

9.8 Dummy variable regression

An alternative way to estimate the fixed effects model is by an OLS regression of 𝑌𝑖𝑡 on 𝑋𝑋𝑋𝑖𝑡
and a full set of dummy variables, one for each individual in the sample.

For the time fixed effects model, we include a full set of dummy variables for each time point in
the sample, and for the two-way fixed effects model, we include individual and time dummies.

This approach is algebraically equivalent to the within and two-way transformations. The
coefficients for the auxiliary dummy variables are usually not reported. The coefficients for
capital are the same as in the table above:

lm(inv ~ capital + factor(firm), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(firm), data = Grunfeld)
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Table 9.1

Dependent variable:
Gross Investment

OLS panel
linear

(1) (2) (3) (4) (5)
Capital Stock 0.477∗∗∗ 0.477∗∗∗ 0.371∗∗∗ 0.538∗∗∗ 0.414∗∗∗

(0.078) (0.126) (0.062) (0.153) (0.057)

Constant 14.236 14.236
(19.393) (28.046)

Firm FE No No Yes No Yes
Year FE No No No Yes Yes
Clustered SE No Yes Yes Yes Yes
Observations 200 200 200 200 200
R2 0.439 0.439 0.660 0.429 0.599
Adjusted R2 0.436 0.436 0.642 0.365 0.530
Residual Std. Error 162.850

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Coefficients:
(Intercept) capital factor(firm)2 factor(firm)3 factor(firm)4

367.6130 0.3707 -66.4553 -413.6821 -326.4410
factor(firm)5 factor(firm)6 factor(firm)7 factor(firm)8 factor(firm)9

-486.2784 -350.8656 -436.7832 -356.4725 -436.1703
factor(firm)10

-366.7313

lm(inv ~ capital + factor(year), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(year), data = Grunfeld)

Coefficients:
(Intercept) capital factor(year)1936 factor(year)1937
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39.2068 0.5383 22.4605 27.8993
factor(year)1938 factor(year)1939 factor(year)1940 factor(year)1941

-36.6889 -42.4012 -11.4293 5.3301
factor(year)1942 factor(year)1943 factor(year)1944 factor(year)1945

-26.2522 -36.3995 -32.3887 -33.0571
factor(year)1946 factor(year)1947 factor(year)1948 factor(year)1949

-3.6307 -57.8083 -73.1115 -106.8436
factor(year)1950 factor(year)1951 factor(year)1952 factor(year)1953

-105.8753 -69.2505 -76.6097 -67.6766
factor(year)1954

-112.6339

lm(inv ~ capital + factor(firm) + factor(year), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(firm) + factor(year), data = Grunfeld)

Coefficients:
(Intercept) capital factor(firm)2 factor(firm)3

354.9166 0.4138 -51.2329 -402.9933
factor(firm)4 factor(firm)5 factor(firm)6 factor(firm)7

-303.7443 -479.3182 -327.4387 -422.4257
factor(firm)8 factor(firm)9 factor(firm)10 factor(year)1936

-332.2429 -421.0790 -339.0705 23.9405
factor(year)1937 factor(year)1938 factor(year)1939 factor(year)1940

32.9483 -27.0935 -30.7979 0.5826
factor(year)1941 factor(year)1942 factor(year)1943 factor(year)1944

19.5836 -8.6393 -17.5675 -13.7593
factor(year)1945 factor(year)1946 factor(year)1947 factor(year)1948

-13.5253 17.6985 -27.2407 -37.4300
factor(year)1949 factor(year)1950 factor(year)1951 factor(year)1952

-66.7623 -63.2855 -23.9098 -23.9138
factor(year)1953 factor(year)1954

-5.1266 -40.1051
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9.9 Panel R-squared

We can decompose the total variation into within group variation and between group varia-
tion:

𝑌𝑖𝑡 − 𝑌 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅⏟
within group

+ 𝑌 𝑖⋅ − 𝑌⏟
between group

Two different R squared versions:

• Overall R-squared:

𝑅2
𝑜𝑣 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑢̂2

𝑖𝑡

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 )2

Interpretation: Proportion of total sample variation in 𝑌𝑖𝑡 explained by the model (the
usual R-squared).

• Within R-squared

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑢̂2

𝑖𝑡

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 𝑖⋅)2

Interpretation: Proportion of sample variation in 𝑌𝑖𝑡 within the individual units is ex-
plained by the model.

For a individual-specific fixed effects regression, consider the two equivalent fixed effects esti-
mators from above:

## plm object
fit.fe = plm(inv ~ capital,

index = c("firm", "year"),
effect = "individual",
model = "within",
data=Grunfeld)

## lm object
fit.fe.lsdv = lm(inv ~ capital + factor(firm), data=Grunfeld)

The summary(object)$r.squared function applied to the plm object returns the within R-
squared, and for the lm object it returns the overall R-squared:

## within R-squared
summary(fit.fe)$r.squared

rsq adjrsq
0.6597327 0.6417291
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## overall R-squared
summary(fit.fe.lsdv)$r.squared

[1] 0.9184098

It is not a big surprise that the fixed effects model explains a lot of the total variation in 𝑌𝑖𝑡.
The equivalent LSDV model assigns each individual its own dummy variable and therefore, by
construction, explains a lot of variation between individuals.

The within R squared is often more insightful because it reflects the model’s ability to explain
the variation within entities over time.

9.10 R-codes

methods-sec09.R
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