
8 Panel Regression

library(plm) # estimating panel models
library(lmtest) # regression inference

8.1 Panel Data

Panel data is data collected from multiple individuals at multiple points in time.

Individuals in a typical economic panel data application are people, households, firms, schools,
regions, or countries. Time periods are often measured in years (annual data), but may have
other frequencies.

𝑌𝑖𝑡 denotes a variable for individual 𝑖 at time period 𝑡. We index observations by both indi-
viduals 𝑖 = 1, … , 𝑛 and the time period 𝑡 = 1, … , 𝑇 .

Multivariate panel data with 𝑘 variables can be written as 𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡, or, in vector form,

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

𝑋1,𝑖𝑡
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

In a balanced panel, each individual 𝑖 = 1, … , 𝑛 has 𝑇 observations. The total number of
observations is 𝑛𝑇 . In typical economic panel datasets we have 𝑛 > 𝑇 (more individuals than
time points) or 𝑛 ≈ 𝑇 (roughly the same number of individuals as time points).

Often panel data have some missing data for at least one time period for at least one entity.
In this case, we call it an unbalanced panel. Notation for unbalanced panels is tedious, so we
focus here only on balanced panels. Statistical software can handle unbalanced panel data in
much the same way as balanced panel data.
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8.2 Pooled Regression

The simplest regression model for panel data is the pooled regression.

Consider a panel dataset with dependent variable 𝑌𝑖𝑡 and 𝑘 independent variables
𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The first regressor variable represents an intercept (i.e. 𝑋1,𝑖𝑡 = 1). We stack the regressor
variables into the 𝑘 × 1 vector

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

1
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

The idea of pooled regression is to pool all observations over 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 and
run a regression on the combined 𝑛𝑇 observations.

Pooled Panel Regression Model

The pooled linear panel regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 =
1, … , 𝑇 is

𝑌𝑖𝑡 = 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡,

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error
term for individual 𝑖 at time 𝑡.
The pooled OLS estimator is

̂𝛽𝛽𝛽pool = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑌𝑖𝑡).

Similar to linear regression, we can combine the regressors into a pooled regressor matrix of
order 𝑛𝑇 × 𝑘:

𝑋𝑋𝑋 = (𝑋𝑋𝑋11, … ,𝑋𝑋𝑋1𝑇 ,𝑋𝑋𝑋21, … ,𝑋𝑋𝑋2𝑇 , … ,𝑋𝑋𝑋𝑛1, … ,𝑋𝑋𝑋𝑛𝑇 )′.
The dependent variable vector is of the order 𝑛𝑇 × 1:

𝑌𝑌𝑌 = (𝑌11, … , 𝑌1𝑇 , 𝑌21, … , 𝑌2𝑇 , … , 𝑌𝑛1, … , 𝑌𝑛𝑇 )′.

In matrix notation, the pooled OLS estimator becomes

̂𝛽𝛽𝛽pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

To illustrate the pooled OLS estimator, consider the Grunfeld dataset, which provides invest-
ment, capital stock, and firm value data for 10 firms over 20 years.
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data(Grunfeld, package = "plm")
head(Grunfeld)

firm year inv value capital
1 1 1935 317.6 3078.5 2.8
2 1 1936 391.8 4661.7 52.6
3 1 1937 410.6 5387.1 156.9
4 1 1938 257.7 2792.2 209.2
5 1 1939 330.8 4313.2 203.4
6 1 1940 461.2 4643.9 207.2

fit1 = lm(inv~capital, data=Grunfeld)
fit1

Call:
lm(formula = inv ~ capital, data = Grunfeld)

Coefficients:
(Intercept) capital

14.2362 0.4772

In principle, the same assumptions can be made as for the linear regression model. However, in
view of (A2), the assumption that (𝑌𝑖𝑡,𝑋𝑋𝑋𝑖𝑡) is independent of (𝑌𝑖,𝑡−1,𝑋𝑋𝑋𝑖,𝑡−1) is unreasonable
because we expect 𝑌𝑖𝑡 and 𝑌𝑖,𝑡−1 to be correlated (autocorrelation) for the same firm 𝑖.
This can be seen in the graph below. The observations appear in clusters, with each firm
forming a cluster.

plot(inv~capital, col=as.factor(firm), data = Grunfeld)
legend("bottomright", legend=1:10, col=1:10, pch = 1, title="Firm", cex=0.8)
abline(fit1, col = "red")

It is still reasonable to assume that the observations of different individuals are independent.
For example, if the firms are randomly selected, 𝑌𝑖𝑡 and 𝑌𝑗,𝑡−1 should be independent for
𝑖 ≠ 𝑗.
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8.3 Pooled Regression Assumptions

We refine our assumptions for the pooled regression case:

• (A1-pool) conditional mean independence: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0.

• (A2-pool) random sampling: (𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 ) are i.i.d. draws from their
joint population distribution for 𝑖 = 1, … , 𝑛.

• (A3-pool) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖𝑡] < ∞, 0 < 𝐸[𝑋4

𝑙,𝑖𝑡] < ∞ for all 𝑙 = 1, … , 𝑘.

• (A4-pool) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.

Under (A1-pool)–(A4-pool), ̂𝛽𝛽𝛽𝑝𝑜𝑜𝑙 is consistent for 𝛽𝛽𝛽 and asymptotically normal:

̂𝛽𝑖 − 𝛽𝑖
𝑠𝑑( ̂𝛽𝑖|𝑋𝑋𝑋)

𝐷→ 𝒩(0, 1) as 𝑛 → ∞

However, 𝑠𝑑( ̂𝛽𝑖|𝑋𝑋𝑋) = √𝑉 𝑎𝑟[ ̂𝛽𝑗|𝑋𝑋𝑋] is different than in the cross-sectional case because of the
clustered structure.

The error covariance matrix is of the order 𝑛𝑇 × 𝑛𝑇 and has the block matrix structure

𝐷𝐷𝐷 = 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 000 … 000
000 𝐷𝐷𝐷2 … 000
000 000 ⋱ 000
000 000 … 𝐷𝐷𝐷𝑛

⎞⎟⎟⎟⎟
⎠
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where 000 indicates the 𝑇 × 𝑇 matrix of zeros, and on the main diagonal we have the 𝑇 × 𝑇
cluster-specific covariance matrices

𝐷𝐷𝐷𝑖 =
⎛⎜⎜⎜⎜
⎝

𝐸[𝑢2
𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,1𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,1𝑢𝑖,𝑇 |𝑋𝑋𝑋]

𝐸[𝑢𝑖,2𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢2
𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,2𝑢𝑖,𝑇 |𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑖,𝑇 𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,𝑇 𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢2

𝑖,𝑇 |𝑋𝑋𝑋]

⎞⎟⎟⎟⎟
⎠

for 𝑖 = 1, … , 𝑛.

We have 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1 with 𝑋𝑋𝑋′𝑋𝑋𝑋 = ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡 and

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 = 𝐸[
𝑛

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)
′
∣𝑋𝑋𝑋].

Therefore, to estimate 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋], we need a different estimator than in the cross-sectional
case.

The cluster-robust covariance matrix estimator is

𝑉𝑉𝑉 pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑁

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡�̂�𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡�̂�𝑖𝑡)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

which is the cluster-robust analog of the HC0 sandwich estimator. The cluster-robust standard
errors are the squareroots of the diagonal entries of 𝑉𝑉𝑉 pool.

8.4 Pooled Regression Inference

To compute the sandwich form 𝑉𝑉𝑉 pool, we can use the plm package. It provides the plm() func-
tion for estimating linear panel models. The column names of our data frame corresponding
to the individual 𝑖 and the time 𝑡 are specified by the index option.

library(plm)
fit2 = plm(inv~capital,

index = c("firm", "year"),
model = "pooling",
data=Grunfeld)

fit2

Model Formula: inv ~ capital

Coefficients:
(Intercept) capital

14.23620 0.47722
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fit2 returns the same estimate as fit1, but is an object of the class plm. You can check it
by comparing class(fit1) and class(fit2).

The vcovHC function applied to a plm object returns the cluster-robust covariance matrix
𝑉𝑉𝑉 pool:

Vpool = vcovHC(fit2)
Vpool

(Intercept) capital
(Intercept) 786.5712535 0.34238311
capital 0.3423831 0.01584317
attr(,"cluster")
[1] "group"

coeftest(fit2, vcov. = Vpool)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.23620 28.04588 0.5076 0.6122959
capital 0.47722 0.12587 3.7914 0.0001988 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively, coeftest(fit2, vcov. = vcovHC) gives the same output. Notice the differ-
ence compared to coeftest(fit1, vcov. = vcovHC), which does not take into account the
clustered structure in the autocovariance matrix and uses 𝑉𝑉𝑉 HC3.

Similarly to the cross-sectional case, the functions coefci() and linearHypothesis() can be
used for confidence intervals and F/Wald tests.

8.5 R-codes

methods-sec08.R
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