
7 Regression Diagnostics

This section discusses some graphical and analytical regression diagnostic techniques for de-
tecting outliers and assessing whether the assumptions of our regression model are met.

7.1 Leverage values

Leverage values ℎ𝑖𝑖 indicate how much influence an observation 𝑋𝑋𝑋𝑖 has on the regression fit.
They are calculated as

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖

and represent the diagonal entries of the hat-matrix

𝑃𝑃𝑃 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′.

A low leverage implies the presence of many regressor observations similar to 𝑋𝑋𝑋𝑖 in the sample,
while a high leverage indicates a lack of similar observations near 𝑋𝑋𝑋𝑖.

An observation with a high leverage ℎ𝑖𝑖 but a response value 𝑌𝑖 that is close to the true
regression line 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 (indicating a small error 𝑢𝑖) is considered a good leverage point. It
positively influences the model, especially in data-sparse regions.

Conversely, a bad leverage point occurs when both ℎ𝑖𝑖 and the error 𝑢𝑖 are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.

7.2 Standardized residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation �̂�𝑖 because they
provide insight into the properties of the unknown error terms 𝑢𝑖.

Under the homoskedastic linear regression model (A1)–(A5), the errors are independent and
have the property

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝜎2.
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Since 𝑃𝑃𝑃𝑋𝑋𝑋 = 𝑋𝑋𝑋 and, therefore,

̂𝑢𝑢𝑢 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢) = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑢𝑢𝑢,

the residuals have a different property:

𝑉 𝑎𝑟[ ̂𝑢𝑢𝑢|𝑋𝑋𝑋] = 𝜎2(𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃).

The 𝑖-th residual satisfies
𝑉 𝑎𝑟[�̂�𝑖|𝑋𝑋𝑋] = 𝜎2(1 − ℎ𝑖𝑖),

where ℎ𝑖𝑖 is the 𝑖-th leverage value.

Under the assumption (A5), the variance of �̂�𝑖 depends on X, while the variance of 𝑢𝑖 does
not. Dividing by √1 − ℎ𝑖𝑖 removes the dependency:

𝑉 𝑎𝑟[ �̂�𝑖
√1 − ℎ𝑖𝑖

∣𝑋𝑋𝑋] = 𝜎2

The standardized residuals are defined as follows:

𝑟𝑖 ∶= �̂�𝑖

√𝑠2
�̂�(1 − ℎ𝑖𝑖)

.

Standardized residuals are available using the R command rstandard().

7.3 Diagnostics plots

Let’s consider the CASchools dataset from the previous subsection:

library(AER)
data(CASchools)
CASchools$STR <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math)/2
TS_mod7 <- lm(score ~ STR + I(STR^2) + I(STR^3)

+ english + lunch + log(income),
data = CASchools)

The plot() function applied to an lm object returns four diagnostics plots:

par(mfrow=c(2,2))
plot(TS_mod7)
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These plots show different scatterplots of the fitted values 𝑌𝑖, residuals �̂�𝑖, quantiles of the
standard normal distribution, leverage values, and standardized residuals.

The red solid line indicates a local scatterplot smoother, which is a smooth locally weighted
line through the points on the scatterplot to visualize the general pattern of the data.

Plot 1: Residuals vs Fitted

This plot indicates whether there are strong hidden nonlinear relationships between the re-
sponse and the regressors that are not captured by the model. If a linear model is estimated
but the relationship is nonlinear, then the assumption (A1) 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 is violated.
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The residuals serve as a proxy for the unknown error terms. If you find equally spread residuals
around a horizontal line without distinct patterns, that is a good indication you don’t have
non-linear relationships.

In the CASchools regression, there is only little indication for an omitted non-linear relation-
ship. Here is an example of a strong omitted nonlinear pattern:

# Set seed for reproducability
set.seed(1)
# Simulate normally distributed regressors
X = rnorm(200)
# Simulate response nonlinearly
Y = X + X^2 + rnorm(200)
# Omit the nonlinearity in the regression
plot(lm(Y ~ X), which = 1)
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Plot 2: Normal Q-Q

The QQ plot is a graphical tool to help us assess if the errors are conditionally normally
distributed, i.e. whether assumption (A6) is satisfied.

Let 𝑟(𝑖) be the order statistics of the standardized residuals (sorted standardized residuals).
The QQ plot plots the ordered standardized residuals 𝑢∗

(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles
of the standard normal distribution.
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If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

In the CASchools regression, we see a slight deviation from normality in the tails. Here is an
extrem example with a strong deviation from normality:

# Exponentially distributed response variable
Y = rexp(200)
# Intercept only regression model
plot(lm(Y ~ 1), which = 2)

−3 −2 −1 0 1 2 3

−
1

1
2

3
4

5

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(Y ~ 1)

Normal Q−Q

51

165128

Plot 3: Scale-Location

This plot shows if error terms are spread equally along the ranges of regressor values, which
is how you can check the assumption of homoskedasticity (A5).

If you see a horizontal line with equally spread points, there is no indication for heteroskedas-
ticity.

In the CASchools regression, we have some indication for weak heteroskedasticity. Here is an
example with extreme heteroskedasticity:

## simulate regressor values
X = rnorm(200)
## error variance varies with the regressor value
u = rnorm(200)*X^2

94



## response value
Y = X + u
plot(lm(Y ~ X), which = 3)

−3 −2 −1 0 1 2 3

0.
0

1.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(Y ~ X)

Scale−Location
77

92

129

Plot 4: Residuals vs Leverage

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

The plot also shows Cook’s distance thresholds. Cook’s distance for observation 𝑖 is defined
as

𝐷𝑖 =
( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′𝑋𝑋𝑋′𝑋𝑋𝑋( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)

𝑘𝑠2
�̂�

,

where
̂𝛽𝛽𝛽(−𝑖) = ̂𝛽𝛽𝛽 − (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖�̂�𝑖(1 − ℎ𝑖𝑖)−1

is the 𝑖-th leave-one-out estimator (the OLS estimator when the 𝑖-th observation is left out).

We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.

Here is an example with two high leverage points. Observation 𝑖 = 200 is a good leverage
point and 𝑖 = 199 is a bad leverage point:
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## simulate regressors and errors
X = rnorm(250)
u = rnorm(250)
## set some unusual observations manually
X[199] = 6
X[200] = 6
u[199] = 5
u[200] = 0
## define dependent variable
Y = X + u
## residuals vs leverage plot
plot(lm(Y ~ X), which = 5)
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7.4 Diagnostics tests

The asymptotic properties of the OLS estimator and inferential methods using HC-type stan-
dard errors do not depend on the validity of the homoskedasticity and normality assumptions
(A5)–(A6).

However, if you are interested in exact inference, verifying the assumptions (A5)–(A6) becomes
crucial, especially in small samples.
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7.4.1 Breusch-Pagan Test (Koenker’s version)

Under homoskedasticity, the variance of the error term does not depend on the values of the
regressors.

To test for heteroskedasticity, we regress the squared residuals on the regressors.

�̂�2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛. (7.1)

Here, 𝛾𝛾𝛾 are the auxiliary coefficients and 𝑣𝑖 are the auxiliary error terms. Under homoskedas-
ticity, the regressors should not be able to explain any variation in the residuals.

Let 𝑅2
𝑎𝑢𝑥 be the r-squared coefficient of the auxiliary regression of Equation 7.1. The test

statistic:
𝐵𝑃 = 𝑛𝑅2

𝑎𝑢𝑥

Under the null hypothesis of homoskedasticity, we have

𝐵𝑃 𝐷→ 𝜒2
𝑘−1

Test decision rule: Reject 𝐻0 if 𝐵𝑃 exceeds 𝜒2
(1−𝛼,𝑘−1).

In R we can apply the bptest() function from the lmtest package to the lm object of our
regression.

7.4.2 Jarque-Bera Test

A general property of any normally distributed random variable is that it has a skewness of 0
and a kurtosis of 3.

Under (A5)–(A6), we have 𝑢𝑖 ∼ 𝒩(0, 𝜎2), which implies 𝐸[𝑢3
𝑖 ] = 0 and 𝐸[𝑢4

𝑖 ] = 3𝜎4.

Consider the sample skewness and the sample kurtosis of the residuals from your regression:

𝑠𝑘𝑒𝑤�̂� = 1
𝑛�̂�3

�̂�

𝑛
∑
𝑖=1

�̂�3
𝑖 , 𝑘𝑢𝑟𝑡�̂� = 1

𝑛�̂�4
�̂�

𝑛
∑
𝑖=1

�̂�4
𝑖

Jarque-Bera test statistic and null distribution if (A5)–(A6) hold:

𝐽𝐵 = 𝑛(1
6(𝑠𝑘𝑒𝑤�̂�)2 + 1

24(𝑘𝑢𝑟𝑡�̂� − 3)2) 𝐷→ 𝜒2
2.

Test decision rule: Reject the null hypothesis of normality if 𝐽𝐵 exceeds 𝜒2
(1−𝛼,2).

The Jarque-Bera test is sensitive to outliers.

In R we apply use the jarque.test() function from the moments package to the residual
vector from our regression.
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7.5 R-codes

methods-sec07.R
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Part III

C) Panel Data Methods
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