
6 Case Study I: Score Data

library(AER) # for the dataset
library(sandwich) # robust standard errors
library(lmtest) # robust inference
library(stargazer) # regression outputs
library(tidyverse) # data management

6.1 Data Set Description

The California School data set (CASchools) is included in the R package AER. This dataset
contains information on various characteristics of schools in California, such as test scores,
teacher salaries, and student demographics.

# load the the data set
data(CASchools)
# get an overview
summary(CASchools)

Upon examination we find that the dataset contains mostly numeric variables, but it lacks
two important ones we’re interested in: average test scores and student-teacher ratios.
However, we can calculate them using the available data.

To find the student-teacher ratio, we divide the total number of students by the number of
teachers. For the average test score, we just need to average the math and reading scores. In
the next code chunk, we’ll demonstrate how to create these variables as vectors and add them
to the CASchools dataset.

# compute student-teacher ratio and append it to CASchools
CASchools$STR <- CASchools$students/CASchools$teachers

# compute test score and append it to CASchools
CASchools$score <- (CASchools$read + CASchools$math)/2

If we ran summary(CASchools) again we would find the two variables of interest as additional
variables named STR and score.
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6.2 Linear Regression

Let’s suppose we were interested in the following regression model

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝑢
In this regression, we aim to explore how test scores (score) are influenced by student-teacher
ratio (STR) and the percentage of English learners (english). The variable english indicates
the proportion of students who may require additional support or resources to improve their
English language skills within each school.

We would run this model in R using the lm() function and explore the regression estimates
with coeftest().

# run the model
model <- lm(score ~ STR + english, data = CASchools)
# report estimates
coeftest(model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 8.812242 77.8499 < 2e-16 ***
STR -1.101296 0.437066 -2.5197 0.01212 *
english -0.649777 0.031297 -20.7617 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coeftest() function in R, along with suitable options such as vcov. = vcovHC for robust
standard errors, automatically includes statistics such as standard errors, 𝑡-statistics, and 𝑝-
values, which is exactly what we need to test hypotheses about single coefficients (𝛽𝑗) in
regression models.

We can also compute confidence intervals for individual coefficients in the multiple regression
model by using the function coefci(). This function computes confidence intervals at the
95% level by default.

# compute confidence intervals for all coefficients in the model
coefci(model, vcov. = vcovHC)
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2.5 % 97.5 %
(Intercept) 668.7102930 703.3541961
STR -1.9604231 -0.2421682
english -0.7112962 -0.5882574

To obtain confidence intervals at a different level, say 90%, we set the argument level in our
call of coefci() accordingly.

coefci(model, vcov. = vcovHC, level = 0.9)

5 % 95 %
(Intercept) 671.5051238 700.5593652
STR -1.8218062 -0.3807851
english -0.7013703 -0.5981834

The output above shows that zero is not an element of the confidence interval for the coefficient
on STR, so we can reject the null hypothesis at significance levels of 5% and 10% (Note that
rejection at the 5% level implies rejection at the 10% level anyway).

We can bring this conclusion further via the 𝑝-value for STR: 0.01 < 0.01212 < 0.05, which
indicates that this coefficient estimate is significant at the 5% level but not at the 1% level.

6.3 Bad Controls

Let’s suppose now that we are interested in investigating the average effect on test scores
of reducing the student-teacher ratio when the expenditures per pupil and the percentage of
english learning pupils are held constant.

Let us augment our model by an additional regressor expenditure, that is a measure for the
total expenditure per pupil in the district. For this model, we will include expenditure as
measured in thousands of dollars. Our new model would be

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝛽3 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 + 𝑢

Let us now estimate the model:

# scale expenditure to thousands of dollars
CASchools$expenditure <- CASchools$expenditure/1000

# estimate the model
model <- lm(score ~ STR + english + expenditure, data = CASchools)
coeftest(model, vcov. = vcovHC)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.577947 15.668623 41.4572 < 2e-16 ***
STR -0.286399 0.487513 -0.5875 0.55721
english -0.656023 0.032114 -20.4278 < 2e-16 ***
expenditure 3.867901 1.607407 2.4063 0.01655 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated impact of a one-unit change in the student-teacher ratio on test scores,
while holding expenditure and the proportion of English learners constant, is −0.29. It is
much smaller than the estimated coefficient in our initial model where we didn’t include
expenditure.

Additionally, this coefficient of STR is no longer statistically significant, even at a 10% signifi-
cance level, as indicated by a 𝑝-value of 0.56. This lack of significance for 𝛽1 may stem from a
larger standard error resulting from the inclusion of expenditure in the model, leading to less
precise estimation of the coefficient on 𝑆𝑇 𝑅. This scenario highlights the challenge of dealing
with strongly correlated predictors.

Note that expenditure can be classified as a bad control because higher expenditure per
pupil may be the cause of a decrease in the student-teacher ratio. By adding expenditure to
the regression we are controlling away our causal effect of STR on score.

The correlation between 𝑆𝑇 𝑅 and 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 can be determined using the cor() function.

# compute the sample correlation between 'STR' and 'expenditure'
cor(CASchools$STR, CASchools$expenditure)

[1] -0.6199822

This indicates a moderately strong negative correlation between the two variables.

The estimated model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 649.58
(15.67)

− 0.29
(0.49)

𝑆𝑇 𝑅 − 0.66
(0.03)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 3.87
(1.61)

𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒

Could we reject the hypothesis that both the 𝑆𝑇 𝑅 coefficient and the 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 coefficient
are zero? To answer this, we need to conduct joint hypothesis tests, which involve placing
restrictions on multiple regression coefficients. This differs from individual 𝑡-tests, where
restrictions are applied to a single coefficient.
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To test whether both coefficients are zero, we will conduct a heteroskedasticity-robust 𝐹 -test.
To do this in R, we can use the function waldtest() contained in the package lmtest.

waldtest(model, c("STR", "expenditure"), vcov = vcovHC)

Wald test

Model 1: score ~ STR + english + expenditure
Model 2: score ~ english
Res.Df Df F Pr(>F)

1 416
2 418 -2 5.2617 0.005537 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output reveals that the 𝐹 -statistic for this joint hypothesis test is 5.26 and the corre-
sponding 𝑝-value is about 0.0055. We can therefore reject the null hypothesis that both
coefficients are zero at the 1% level of significance. Notice that the individual t-tests for STR
and expenditure are insignificant at the 1% level.

6.4 Good Controls

In order to reduce the risk of omitted variable bias, it is essential to include control variables
in regression models. In our case, we are interested in estimating the causal effect of a change
in the student-teacher ratio on test scores.

By including english as control variable, we aimed to control for unobservable student charac-
teristics which correlate with the student-teacher ratio and are assumed to have an impact on
test score. Including expenditure was actually not a good idea because it is highly correlated
with STR (imperfect multicollinearity) and may be the cause of the student-teacher ratio (bad
control).

There are other interesting control variables to observe:

• lunch: the share of students that qualify for a subsidized or even a free lunch at school.

• calworks: the percentage of students that qualify for the CalWorks income assistance
program.

Students eligible for CalWorks live in families with a total income below the threshold for
the subsidized lunch program, so both variables are indicators for the share of economically
disadvantaged children. We suspect both indicators are highly correlated.
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# estimate the correlation between 'calworks' and 'lunch'
cor(CASchools$calworks, CASchools$lunch)

[1] 0.7394218

If they are highly correlated as we just confirmed, there is no standard way to proceed when
deciding which variable to use. It may not be a good idea to use both variables as regressors
in view of collinearity, but as long as we are only interested in the coefficient of STR we do
not care whether the coefficients of calworks and lunch have an imperfect multicollinearity
problem.

Let’s first explore further these control variables and how they correlate with the dependent
variable by plotting them against test scores.

correlations = round(cor(CASchools$score, CASchools |>
select(english, lunch, calworks)),2)

par(mfrow = c(1,3), pch = 20, col = "steelblue", bty="n")
plot(score ~ english, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[1]))
plot(score ~ lunch, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[2]))
plot(score ~ calworks, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[3]))
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We shall consider five different model equations:
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TestScore = 𝛽0 + 𝛽1 STR + 𝑢, (6.1)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝑢, (6.2)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽3 lunch + 𝑢, (6.3)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽4 calworks + 𝑢, (6.4)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽3 lunch + 𝛽4 calworks + 𝑢. (6.5)

The best way to report regression results is in a table. The stargazer package is very con-
venient for this purpose. It provides a function that generates professionally looking HTML
and LaTeX tables that satisfy scientific standards. One simply has to provide one or multiple
object(s) of class lm. The rest is done by the function stargazer().

# estimate different model specifications
spec1 <- lm(score ~ STR, data = CASchools)
spec2 <- lm(score ~ STR + english, data = CASchools)
spec3 <- lm(score ~ STR + english + lunch, data = CASchools)
spec4 <- lm(score ~ STR + english + calworks, data = CASchools)
spec5 <- lm(score ~ STR + english + lunch + calworks, data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(spec1))),

sqrt(diag(vcovHC(spec2))),
sqrt(diag(vcovHC(spec3))),
sqrt(diag(vcovHC(spec4))),
sqrt(diag(vcovHC(spec5))))

stargazer(spec1, spec2, spec3, spec4, spec5,
font.size = "footnotesize",
se = rob_se,
type="latex",
omit.stat = "f", header = FALSE)

Each column in this table contains most of the information provided also by coeftest()
and summary() for each of the models under consideration. Each of the coefficient estimates
includes its standard error in parenthesis and one, two or three asterisks representing their
significance levels (10% , 5% and 1%). Although 𝑡-statistics are not reported, one may compute
them manually simply by dividing a coefficient estimate by the corresponding standard error.
At the bottom of the table summary statistics for each model and a legend are reported.

From the model comparison we observe that including control variables approximately cuts
the coefficient on 𝑆𝑇 𝑅 in half. Additionally, the estimation seems to remain unaffected by the
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Table 6.1

Dependent variable:
score

(1) (2) (3) (4) (5)
STR −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.524) (0.437) (0.274) (0.343) (0.273)

english −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.037)

lunch −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.039)

calworks −0.790∗∗∗ −0.048
(0.070) (0.062)

Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.461) (8.812) (5.641) (7.006) (5.615)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 (df = 418) 14.464 (df = 417) 9.080 (df = 416) 11.654 (df = 416) 9.084 (df = 415)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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specific set of control variables employed. Thus, the inference drawn is that, under all other
conditions held constant, reducing the student-teacher ratio by one unit is associated with an
estimated average rise in test scores of roughly 1 point.

Incorporating student characteristics as controls increased both 𝑅2 and ̄𝑅2 from about 0.05
(spec1) to about 0.77 (spec3 and spec5), indicating these variables’ suitability as predictors
for test scores.

We also observe that the coefficients for some of the control variables are not significant in
some models. For example in spec5, the coefficient on 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 is not significantly different
from zero at the 10% level.

Lastly, we see that the effect on the estimate (and its standard error) of the coefficient on
𝑆𝑇 𝑅 when adding 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 to the base specification spec3 is minimal. Hence, we can identify
calworks as an unnecessary control variable, especially considering the incorporation of 𝑙𝑢𝑛𝑐ℎ
in this model.

6.5 Nonlinear Specifications

Sometimes a nonlinear regression function is better suited for estimating a population rela-
tionship. Let’s have a look at an example that explores the relationship between the income
of schooling districts and their test scores.

We start our analysis by computing the correlation between both variables.

cor(CASchools$income, CASchools$score)

[1] 0.7124308

Income and test score are positively correlated: school districts with above-average income
tend to achieve above-average test scores. But does a linear regression adequately model the
data? To investigate this further, let’s visualize the data by plotting it and adding a linear
regression line.

# Fit a simple linear model and plot observations with the regression line
linear_model <- lm(score ~ income, data = CASchools)
plot(CASchools$income, CASchools$score, col = "steelblue", pch = 20,

xlab = "District Income (thousands of dollars)", ylab = "Test Score",
main = "Test Score vs. District Income and a Linear OLS Regression Function")

abline(linear_model, col = "red", lwd = 2) # Add regression line
legend("bottomright", "Linear Fit", col = "red", lwd = 2) # Add legend
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The plot shows that the linear regression line seems to overestimate the true relationship
when income is either very high or very low and it tends to underestimates it for the middle
income group. Luckily, Ordinary Least Squares (OLS) isn’t limited to linear regressions of the
predictors. We have the flexibility to model test scores as a function of income and the square
of income.

This leads us to the following regression model:

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + 𝛽2 𝑖𝑛𝑐𝑜𝑚𝑒2
𝑖 + 𝑢𝑖

which is a quadratic regression model. Here we treat 𝑖𝑛𝑐𝑜𝑚𝑒2 as an additional explanatory
variable.

# fit the quadratic Model
quadratic_model <- lm(score ~ income + I(income^2), data = CASchools)

# obtain the model summary
coeftest(quadratic_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 607.3017435 2.9242237 207.6796 < 2.2e-16 ***
income 3.8509939 0.2711045 14.2048 < 2.2e-16 ***
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I(income^2) -0.0423084 0.0048809 -8.6681 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated function is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 607.3
(2.93)

+ 3.85
(0.27)

𝑖𝑛𝑐𝑜𝑚𝑒𝑖 − 0.0423
(0.00489)

𝑖𝑛𝑐𝑜𝑚𝑒2
𝑖

We will now draw the same scatter plot as for the linear model and add the regression line
for the quadratic model. Since abline() only plots straight lines, it cannot be used here,
but we can use lines() function instead, which is suitable for plotting nonstraight lines (see
?lines). The most basic call of lines() is lines(x_values, y_values) where x_values
and y_values are vectors of the same length that provide coordinates of the points to be
sequentially connected by a line.

This requires sorted coordinate pairs according to the X-values. We may use the function
order() to sort the fitted values of score according to the observations of income, obtained
from our quadratic model.

# Plot observations and add linear and quadratic regression lines
plot(CASchools$income, CASchools$score, col="steelblue", pch=20,

xlab="District Income (thousands of dollars)", ylab="Test Score",
main="Estimated Linear and Quadratic Regression Functions")

# Linear regression line
abline(linear_model, col="green", lwd=2)
# Quadratic regression line
lines(CASchools$income[order(CASchools$income)],

fitted(quadratic_model)[order(CASchools$income)], col="red", lwd=2)
legend("bottomright", c("Quadratic Fit", "Linear Fit"), lwd=2, col=c("red", "green"))

As the plot shows, the quadratic function appears to provide a better fit to the data compared
to the linear function.

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a level-log model
LinearLog_model <- lm(score ~ log(income), data = CASchools)

# compute robust summary
coeftest(LinearLog_model, vcov = vcovHC)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 557.8323 3.8622 144.433 < 2.2e-16 ***
log(income) 36.4197 1.4058 25.906 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 557.8
(3.86)

+ 36.42
(1.41)

log(𝑖𝑛𝑐𝑜𝑚𝑒)

We plot this function

# Draw a scatterplot with linear and linear-log regression lines
plot(score ~ income, data = CASchools, col = "steelblue", pch = 20,

ylab="Score", xlab="Income", main = "Linear-Log Regression Line")
order_id <- order(CASchools$income)
# Linear-log regression line
lines(CASchools$income[order_id], fitted(LinearLog_model)[order_id],

col = "red", lwd = 2)
# Linear regression line
lines(CASchools$income[order_id], fitted(linear_model)[order_id],
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col = "green", lwd = 2)
legend("bottomright", c("Linear-log Fit", "Linear Fit"),

lwd = 2, col = c("red", "green"))
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We can interpret ̂𝛽1 as follows: a 1% increase in income is associated with an average increase
in test scores of 0.01 ⋅ 36.42 = 0.36 points.

6.6 Interactions

Sometimes it is interesting to learn how the effect on 𝑌 of a change in an independent variable
depends on the value of another independent variable.

For example, we may ask if districts with many English learners benefit differently from a
decrease in the student-teacher ratio compared to those with fewer English learning students.
We can assess this by using a multiple regression model and including an interaction term.

We consider three cases: when both independent variables are binary, when one is binary and
the other is continuous, and when both are continuous.

6.6.1 Two Binary Variables

Let

𝐻𝑖𝑆𝑇 𝑅 = {1, if STR ≥ 20,
0, else,

𝐻𝑖𝐸𝐿 = {1, if english ≥ 10,
0, else.
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In R, we construct these dummies as follows

# append HiSTR to CASchools
CASchools$HiSTR <- as.numeric(CASchools$STR >= 20)

# append HiEL to CASchools
CASchools$HiEL <- as.numeric(CASchools$english >= 10)

We now estimate the model

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝐻𝑖𝑆𝑇 𝑅 + 𝛽2 𝐻𝑖𝐸𝐿 + 𝛽3 𝐻𝑖𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿 + 𝑢𝑖.

We can simply indicate HiEL * HiSTR inside the lm() formula to add the interaction term to
the model. Note that this adds 𝐻𝑖𝐸𝐿, 𝐻𝑖𝑆𝑇 𝑅 and their interaction as regressors, whereas
indicating HiEL:HiSTR only adds the interaction term.

# estimate the model with a binary interaction term
bi_model <- lm(score ~ HiSTR * HiEL, data = CASchools)

# print a robust summary of the coefficients
coeftest(bi_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 664.1433 1.3908 477.5272 < 2.2e-16 ***
HiSTR -1.9078 1.9416 -0.9826 0.3264
HiEL -18.3155 2.3453 -7.8094 4.721e-14 ***
HiSTR:HiEL -3.2601 3.1360 -1.0396 0.2991
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 664.1
(1.39)

− 1.9
(1.94)

HiSTR − 18.3
(2.35)

HiEL − 3.3
(3.14)

(HiSTR ⋅ HiEL)

According to this model, when moving from a school district with a low student-teacher ratio
to one with a high ratio, the average effect on test scores depends on the percentage of English
learners (HiEL), and can be computed as −1.9 − 3.3 ⋅ 𝐻𝑖𝐸𝐿.
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This is, for districts with fewer English learners (𝐻𝑖𝐸𝐿 = 0), the expected decrease in test
scores is 1.9 points. However, for districts with a higher proportion of English learners
(𝐻𝑖𝐸𝐿 = 1), the predicted decrease in test scores is 1.9 + 3.3 = 5.2 points.

We can estimate the mean test score conditional on all possible combination of the included
binary variables

𝐻𝑖𝑆𝑇 𝑅 𝐻𝑖𝐸𝐿 𝐸[𝑠𝑐𝑜𝑟𝑒|𝐻𝑖𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿]𝑠𝑐𝑜𝑟𝑒
0 0 𝛽0 664.1
0 1 𝛽0 + 𝛽2 645.8
1 0 𝛽0 + 𝛽1 662.2
1 1 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 640.6

6.6.2 Continuous and Binary Variables

This specification where the interaction term includes a continuous variable (𝑋𝑖) and a binary
variable (𝐷𝑖) allows for the slope to depend on the binary variable. There are three different
possibilities:

1. Different intercepts, same slope:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝑢𝑖

2. Different intercepts and slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3(𝑋𝑖 ⋅ 𝐷𝑖) + 𝑢𝑖

3. Same intercept, different slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 ⋅ 𝐷𝑖) + 𝑢𝑖.
Does the effect on test scores of cutting the student-teacher ratio depend on whether the
percentage of students still learning English is high or low?

One way to answer this question is to use a specification that allows for two different regression
lines, depending on whether there is a high or a low percentage of English learners. This is
achieved using the different intercept/different slope specification. We estimate the regression
model

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅𝑖 + 𝛽2 𝐻𝑖𝐸𝐿𝑖 + 𝛽3 (𝑆𝑇 𝑅𝑖 ⋅ 𝐻𝑖𝐸𝐿𝑖) + 𝑢𝑖
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# estimate the model
bci_model <- lm(score ~ STR + HiEL + STR * HiEL, data = CASchools)

# print robust summary of coefficients
coeftest(bci_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.24584 12.07126 56.5182 <2e-16 ***
STR -0.96846 0.59943 -1.6156 0.1069
HiEL 5.63914 19.88866 0.2835 0.7769
STR:HiEL -1.27661 0.98557 -1.2953 0.1959
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2
(12.07)

− 0.97
(0.60)

𝑆𝑇 𝑅 + 5.6
(19.89)

𝐻𝑖𝐸𝐿 − 1.28
(0.99)

(𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿).

The estimated regression line for districts with a low fraction of English learners (𝐻𝑖𝐸𝐿 = 0)
is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 − 0.97 𝑆𝑇 𝑅𝑖

while the one for districts with a high fraction of English learners (𝐻𝑖𝐸𝐿 = 1) is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 + 5.6 − 0.97 𝑆𝑇 𝑅𝑖 − 1.28 𝑆𝑇 𝑅𝑖
= 687.8 − 2.25 𝑆𝑇 𝑅𝑖.

The expected rise in test scores after decreasing the student-teacher ratio by one unit is roughly
0.97 points in districts with a low proportion of English learners, but 2.25 points in districts
with a high concentration of English learners.

The coefficient on the interaction term, “𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿”, indicates that the contrast between
these effects amounts to 1.28 points.

We now plot both regression lines from the model by using different colors to differentiate each
of the 𝑆𝑇 𝑅 levels.
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# Determine observations with English learners >= 10%
id <- CASchools$english >= 10

# Plot observations with different colors for HiEL status and draw regression lines
plot(CASchools$STR, CASchools$score, xlim = c(0, 27), ylim = c(600, 720), pch = 20,

col = ifelse(id, "green", "red"), xlab = "Class Size", ylab = "Test Score")
legend("topleft", pch = 20, col = c("red", "green"), legend = c("HiEL = 0", "HiEL = 1"))
abline(coef = c(bci_model$coefficients[1], bci_model$coefficients[2]),

col = "red", lwd = 1.5)
abline(coef = c(bci_model$coefficients[1] + bci_model$coefficients[3],

bci_model$coefficients[2] + bci_model$coefficients[4]),
col = "green", lwd = 1.5)
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6.6.3 Two Continuous Variables

Let’s now examine the interaction between the continuous variables student-teacher ratio
(𝑆𝑇 𝑅) and the percentage of English learners (𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

# estimate regression model including the interaction between 'english' and 'STR'
cci_model <- lm(score ~ STR + english + english * STR, data = CASchools)

# print summary
coeftest(cci_model, vcov. = vcovHC)

t test of coefficients:

84



Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.3385268 11.9378561 57.4926 < 2e-16 ***
STR -1.1170184 0.5965151 -1.8726 0.06183 .
english -0.6729119 0.3865378 -1.7409 0.08245 .
STR:english 0.0011618 0.0191576 0.0606 0.95167
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 686.3
(11.94)

− 1.12
(0.60)

𝑆𝑇 𝑅 − 0.67
(0.39)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 0.0012
(0.02)

(𝑆𝑇 𝑅 ⋅ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

Before proceeding with the interpretations, let us explore the quartiles of 𝑒𝑛𝑔𝑙𝑖𝑠ℎ

summary(CASchools$english)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.941 8.778 15.768 22.970 85.540

When the percentage of English learners is at the median (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 8.778), the slope of the
line is estimated to be (−1.12 + 0.0012 ⋅ 8.778 = −1.12). When the percentage of English
learners is at the 75th percentile (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 22.97), this line is estimated to be slightly flatter,
with a slope of −1.12 + 0.0012 ⋅ 22.97 = −1.09.

In other words, for a district with 8.78% English learners, the estimated effect of a one-unit
reduction in the student-teacher ratio is to increase on average test scores by 1.11 points, but
for a district with 23% English learners, reducing the student-teacher ratio by one unit is
predicted to increase test scores on average by 1.09 points.

However, it is important to note from the output of coeftest() that the estimated coefficient
on the interaction term (𝛽3) is not statistically significant at the 10% level, so we cannot reject
the null hypothesis 𝐻0 ∶ 𝛽3 = 0.

6.7 Nonliearities in Score Regressions

This section examines three key questions about test scores and the student-teacher ratio.

• First, it explores if reducing the student-teacher ratio affects test scores differently based
on the number of English learners, even when considering economic differences across
districts.
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• Second, it investigates if this effect varies depending on the student-teacher ratio.

• Lastly, it aims to determine the expected impact on test scores when the student-teacher
ratio decreases by two students per teacher, considering both economic factors and po-
tential nonlinear relationships.

We will answer these questions considering the previously explained nonlinear regression spec-
ifications, extended to include two measures of the economic background of the students: the
percentage of students eligible for a subsidized lunch (𝑙𝑢𝑛𝑐ℎ) and the logarithm of average
district income (𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒)).
The logarithm of district income is used following our previous empirical analysis, which sug-
gested that this specification captures the nonlinear relationship between scores and income.

We leave out the expenditure per pupil (𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒) from our analysis because including it
would suggest that spending changes with the student-teacher ratio (in other words, we would
not be holding expenditures per pupil constant).

We will consider 7 different model specifications:

# estimate all models
TS_mod1 <- lm(score ~ STR + english + lunch, data = CASchools)
TS_mod2 <- lm(score ~ STR + english + lunch + log(income), data = CASchools)
TS_mod3 <- lm(score ~ STR + HiEL + HiEL:STR, data = CASchools)
TS_mod4 <- lm(score ~ STR + HiEL + HiEL:STR + lunch + log(income), data = CASchools)
TS_mod5 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income),

data = CASchools)
TS_mod6 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) + HiEL:I(STR^3)

+ lunch + log(income), data = CASchools)
TS_mod7 <- lm(score ~ STR + I(STR^2) + I(STR^3) + english + lunch + log(income),

data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(TS_mod1))),

sqrt(diag(vcovHC(TS_mod2))),
sqrt(diag(vcovHC(TS_mod3))),
sqrt(diag(vcovHC(TS_mod4))),
sqrt(diag(vcovHC(TS_mod5))),
sqrt(diag(vcovHC(TS_mod6))),
sqrt(diag(vcovHC(TS_mod7))))

stargazer(TS_mod1, TS_mod2, TS_mod3, TS_mod4,
TS_mod5, TS_mod6, TS_mod7,
font.size = "footnotesize",
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se = rob_se,
type="latex",
omit.stat = "f", df=FALSE, header = FALSE)

Table 6.3

Dependent variable:
score

(1) (2) (3) (4) (5) (6) (7)
STR −0.998∗∗∗ −0.734∗∗∗ −0.968 −0.531 64.339∗∗ 83.702∗∗∗ 65.285∗∗

(0.274) (0.261) (0.599) (0.350) (27.295) (31.506) (27.708)

english −0.122∗∗∗ −0.176∗∗∗ −0.166∗∗∗

(0.033) (0.034) (0.035)

I(STR 2̂) −3.424∗∗ −4.381∗∗∗ −3.466∗∗

(1.373) (1.597) (1.395)

I(STR 3̂) 0.059∗∗∗ 0.075∗∗∗ 0.060∗∗∗

(0.023) (0.027) (0.023)

lunch −0.547∗∗∗ −0.398∗∗∗ −0.411∗∗∗ −0.420∗∗∗ −0.418∗∗∗ −0.402∗∗∗

(0.024) (0.034) (0.029) (0.029) (0.029) (0.034)

log(income) 11.569∗∗∗ 12.124∗∗∗ 11.748∗∗∗ 11.800∗∗∗ 11.509∗∗∗

(1.841) (1.823) (1.799) (1.809) (1.834)

HiEL 5.639 5.498 −5.474∗∗∗ 816.076∗∗

(19.889) (10.012) (1.046) (354.100)

STR:HiEL −1.277 −0.578 −123.282∗∗

(0.986) (0.507) (54.290)

I(STR 2̂):HiEL 6.121∗∗

(2.752)

I(STR 3̂):HiEL −0.101∗∗

(0.046)

Constant 700.150∗∗∗ 658.552∗∗∗ 682.246∗∗∗ 653.666∗∗∗ 252.050 122.353 244.809
(5.641) (8.749) (12.071) (10.053) (179.724) (205.050) (181.899)

Observations 420 420 420 420 420 420 420
R2 0.775 0.796 0.310 0.797 0.801 0.803 0.801
Adjusted R2 0.773 0.794 0.305 0.795 0.798 0.799 0.798
Residual Std. Error 9.080 8.643 15.880 8.629 8.559 8.547 8.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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What can be concluded from the results presented?

• First, we we see the estimated coefficient on 𝑆𝑇 𝑅 is highly significant in all models
except from specifications (3) and (4).

• When we add 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒) to model (1) in the second specification, all coefficients remain
highly significant while the coefficient on the new regressor is also statistically significant
at the 1% level. Additionally, the coefficient on 𝑆𝑇 𝑅 is now 0.27 higher than in model
(1), suggesting a possible mitigation of omitted variable bias when including 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒)
as regressor. For these reasons, it makes sense to keep this variable in other models too.

• Models (3) and (4) include the interaction term between 𝑆𝑇 𝑅 and 𝐻𝑖𝐸𝐿, first without
control variables in the third specification and then controlling for economic factors in
the fourth. The estimated coefficient for the interaction term is not significant at any
common level in any of these models, nor is the coefficient on the dummy variable 𝐻𝑖𝐸𝐿.
Hence, despite accounting for economic factors, we cannot reject the null hypotheses that
the impact of the student-teacher ratio on test scores remains consistent across districts
with high and low proportions of English learning students.

• In regression (5) we have included quadratic and cubic terms for 𝑆𝑇 𝑅, while omitting
the interaction term between 𝑆𝑇 𝑅 and 𝐻𝑖𝐸𝐿, since it was not significant in specification
(4). The results indicate high levels of significance for these estimated coefficients and
we can therefore assume the presence of a nonlinear effect of the student-teacher ration
on test scores. This could be also verified with an 𝐹 -test of 𝐻0 ∶ 𝛽2 = 𝛽3 = 0.

• Regression (6) further examines whether the proportion of English learners influences
the student-teacher ratio, incorporating the interaction terms 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅2

and 𝐻𝑖𝐸𝐿 ⋅ 𝑆𝑇 𝑅3. Each individual 𝑡-test confirms significant effects. To validate this,
we perform a robust 𝐹 -test to assess 𝐻0 ∶ 𝛽5 = 𝛽6 = 𝛽7 = 0.

# check joint significance of the interaction terms
waldtest(TS_mod6,

c("STR:HiEL", "I(STR^2):HiEL", "I(STR^3):HiEL"),
vcov = vcovHC)

Wald test

Model 1: score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +
HiEL:I(STR^3) + lunch + log(income)

Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income)
Res.Df Df F Pr(>F)

1 410
2 413 -3 2.1885 0.08882 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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• With a 𝑝-value of 0.08882 we can just reject the null hypothesis at the 10% level. This
provides only weak evidence that the regression functions are different for districts with
high and low percentages of English learners.

• In model (7), we employ a continuous measure for the proportion of English learners
instead of a dummy variable (thus omitting interaction terms). We note minimal alter-
ations in the coefficient estimates for the remaining regressors. Consequently, we infer
that the findings observed in model (5) are robust and not influenced significantly by
the method used to measure the percentage of English learners.

We can now address the initial questions raised in this section:

• First, in the linear models, the impact of the percentage of English learners on changes
in test scores due to variations in the student-teacher ratio is minimal, a conclusion
that holds true even after accounting for students’ economic backgrounds. Although the
cubic specification (6) suggests that the relationship between student-teacher ratio and
test scores is influenced by the proportion of English learners, the magnitude of this
influence is not significant.

• Second, while controlling for students’ economic backgrounds, we identify nonlinearities
in the association between student-teacher ratio and test scores.

• Lastly, under the linear specification (2), a reduction of two students per teacher
in the student-teacher ratio is projected to increase test scores by approximately 1.46
points. As this model is linear, this effect remains consistent regardless of class size. For
instance, assuming a student-teacher ratio of 20, the nonlinear model (5) indicates
that the reduction in student-teacher ratio would lead to an increase in test scores by

64.33 ⋅ 18 + 182 ⋅ (−3.42) + 183 ⋅ (0.059)
− (64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059))

≈ 3.3

points. If the ratio was 22, a reduction to 20 leads to a predicted improvement in test
scores of

64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059)
− (64.33 ⋅ 22 + 222 ⋅ (−3.42) + 223 ⋅ (0.059))

≈ 2.4

points. This suggests that the effect is more evident in smaller classes.

6.8 R-codes

methods-sec06.R
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