
5 Regression Inference

library(tidyverse)
library(kableExtra)
library(sandwich)
library(lmtest)

5.1 Standardized coefficients

The 𝑗-th OLS coefficient has the conditional standard deviation

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

Note that [𝐴𝐴𝐴]𝑗𝑗 indicates the 𝑗-th diagonal element of the matrix 𝐴𝐴𝐴.

Under the homoskedasticity assumption (A5), the standard deviation simplifies to

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

The coefficient is unbiased with 𝐸[ ̂𝛽𝑗|𝑋𝑋𝑋] = 𝛽𝑗 and has the standardized representation

𝑍𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
.

Under (A1)–(A4),
√𝑛( ̂𝛽𝑗 − 𝛽𝑗) converges to a normal distribution, and therefore

𝑍𝑗
𝐷→ 𝒩(0, 1) as 𝑛 → ∞.

A direct consequence is that

lim
𝑛→∞

𝑃 ( ̂𝛽𝑗 − 𝑧(1− 𝛼
2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 + 𝑧(1− 𝛼

2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)) = 1 − 𝛼,

where 𝑧(𝑝) is the 𝑝-quantile of the standard normal distribution. Thus, ̂𝛽𝑗 ± 𝑧(1− 𝛼
2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

defines an asymptotic 1 − 𝛼 confidence interval for 𝛽𝑗.
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Under the normality assumption (A6), the OLS estimator ̂𝛽𝑗 is normal conditional on 𝑋𝑋𝑋, which
implies that 𝑍𝑗 ∼ 𝒩(0, 1) for any fixed sample size 𝑛. In this case, ̂𝛽𝑗 ± 𝑧(1− 𝛼

2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) is an
exact confidence interval for 𝛽𝑗.

Note that 𝐷𝐷𝐷 is unknown and 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) is not computable in practice, so the confidence interval
is not feasible.

5.2 Standard Errors

A standard error 𝑠𝑒( ̂𝛽𝑗) for an estimator ̂𝛽𝑗 is an estimator of the standard deviation of the
distribution of ̂𝛽𝑗.

We say that the standard error is consistent if

𝑠𝑒( ̂𝛽𝑗)
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑝
→ 1.

This property ensures that, in practice, we can replace the unknown standard deviation with
the standard error to apply inferential methods such as confidence intervals and t-tests.

To estimate the unknown standard deviation of the OLS estimator, the diagonal matrix 𝐷𝐷𝐷 =
𝑑𝑖𝑎𝑔(𝜎2

1, … , 𝜎2
𝑛) is replaced by some sample counterpart 𝐷𝐷𝐷 = 𝑑𝑖𝑎𝑔(𝜎̂2

1, … , 𝜎̂2
𝑛).

5.2.1 Robust standard errors

Various heteroskedasticity-consistent (HC) standard errors have been proposed in the
literature:

HC type weights
HC0 𝜎̂2

𝑖 = 𝑢̂2
𝑖

HC1 𝜎̂2
𝑖 = 𝑛

𝑛−𝑘 𝑢̂2
𝑖

HC2 𝜎̂2
𝑖 = 𝑢̂2

𝑖
1−ℎ𝑖𝑖

HC3 𝜎̂2
𝑖 = 𝑢̂2

𝑖
(1−ℎ𝑖𝑖)2

HC0 replaces the unknown variances with squared residuals, and HC1 is a bias-corrected
version of HC0. HC2 and HC3 use the leverage values ℎ𝑖𝑖 (the diagonal entries of the influence
matrix 𝑃𝑃𝑃 ) and give less weight to influential observations.
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HC1 and HC3 are the most common choices and can be written as

𝑠𝑒ℎ𝑐1( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1( 𝑛
𝑛 − 𝑘

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]
𝑗𝑗

,

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]

𝑗𝑗
.

All versions perform similarly well in large samples, but HC3 performs best in small samples
and is the preferred choice.

HC standard errors are also known as heteroskedasticity-robust standard errors or sim-
ply robust standard errors.

Estimators for the full covariance matrix of ̂𝛽𝛽𝛽 have the form

𝑉𝑉𝑉 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The HC3 covariance estimator can be written as

𝑉𝑉𝑉 ℎ𝑐3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

5.2.2 Classical standard errors

Classical standard errors put equal weights on all observations:

𝜎̂2
𝑖 = 𝑠2

𝑢̂ = 1
𝑛 − 𝑘

𝑛
∑
𝑗=1

𝑢̂2
𝑗 .

This implies 𝐷𝐷𝐷 = 𝑠2
𝑢̂𝐼𝐼𝐼𝑛 and 𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 = 𝑠2

𝑢̂𝑋𝑋𝑋′𝑋𝑋𝑋. Therefore, the classical covariance matrix
estimator reduces to

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
𝑢̂(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The classical standard errors are

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) = √𝑠2
𝑢̂[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

Classical standard errors are only valid under (A5) and are also known as constant variance
standard errors or homoskedasticity-only standard errors. Classical standard errors
should only be used if there are very good reasons for the error terms to be homoskedastic.
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5.2.3 Standard Errors in R

The covariance matrix estimates can be computed using the vcovHC() function from the
sandwich package. HC3 is the default version. The standard errors are the square roots of
their diagonal entries.

fit = lm(wage ~ education + experience + black + female, data = cps)
hom = sqrt(diag(vcovHC(fit, "const")))
HC1 = sqrt(diag(vcovHC(fit, "HC1")))
HC3 = sqrt(diag(vcovHC(fit)))
tibble("Variable" = names(coefficients(fit)), hom, HC1, HC3) |>
mutate_if(is.numeric, round, digits = 4) |>
kbl(align = 'c')

Variable hom HC1 HC3
(Intercept) 0.4910 0.5666 0.5667
education 0.0305 0.0408 0.0409
experience 0.0072 0.0067 0.0067

black 0.2684 0.2243 0.2243
female 0.1670 0.1603 0.1604

5.3 Interval estimates

5.3.1 Asymptotic Intervals

A confidence interval 𝐼1−𝛼 for 𝛽𝑗 with coverage probability 1−𝛼 is asymptotically valid if

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.

Under (A1)–(A4), we can use

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑧(1− 𝛼
2 )𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑧(1− 𝛼

2 )𝑠𝑒ℎ𝑐( ̂𝛽𝑗)],

where 𝑠𝑒ℎ𝑐( ̂𝛽𝑗) is any HC-type standard error. 𝑧(𝑝) can be returned using qnorm(p).

In practice, t-quantiles are often used instead of z-quantiles:

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗)],

where 𝑡(𝑝,𝑚) is the 𝑝-quantile of the t-distribution with 𝑚 degrees of freedom. 𝑡(𝑝,𝑚) can be
returned using qt(p,m).
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Asymptotically, it makes no difference whether t- or z-quantiles are used. We have

𝑡(1− 𝛼
2 ,𝑛−𝑘) > 𝑧(1− 𝛼

2 )

for any fixed 𝑛, which makes the t-based confidence intervals a little wider (conservative), but
asymptotically they coincide because

lim
𝑛→∞

𝑡(1− 𝛼
2 ,𝑛−𝑘) = 𝑧(1− 𝛼

2 ).

You can use the coefci() function from the lmtest package. coefci(fit) calculates clas-
sical confidence intervals, coefci(fit, vcov. = vcovHC) uses HC3 standard errors, and
coefci(fit, vcov. = vcovHC, df=Inf) considers z-quantiles instead of t-quantiles.

coefci(fit, vcov. = vcovHC)

2.5 % 97.5 %
(Intercept) -22.8201704 -20.5988645
education 3.0549552 3.2151008
experience 0.2311859 0.2574641
black -3.2951083 -2.4157606
female -7.7505755 -7.1219793

You can use qt(p, df = nu) and qnorm(p) to get the t- and z-quantiles, where p is the
probability and nu is the degrees of freedom. The CDF values for the standard normal and
t-distributions can be calculated using pt() and pnorm().

5.3.2 Exact Intervals

An exact confidence interval 𝐼1−𝛼 for 𝛽𝑗 satisfies

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼

for any sample size 𝑛.

Exact confidence intervals for the regression coefficients are only available if the homoskedas-
ticity and normality assumptions (A5) and (A6) hold. In this case,

(𝑛 − 𝑘)𝑠2
𝑢̂

𝜎2 ∼ 𝜒2
𝑛−𝑘,

which implies that
𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

∼ √𝜒2
𝑛−𝑘/(𝑛 − 𝑘).
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Replacing the true standard deviation with the classical standard error in the standardized
OLS coefficient 𝑍𝑗 yields

̂𝛽𝑗 − 𝛽𝑗
𝑠𝑒ℎ𝑜𝑚(𝛽𝑗)

= 𝑍𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)/𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘.

Therefore,

𝐼1−𝛼,ℎ𝑜𝑚 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)]

is an exact confidence interval for 𝛽𝑗 under (A1)–(A6).

5.4 t-Tests

The t-statistic is the OLS estimator standardized with the standard error. Under (A1)–(A4)
we have

𝑇 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝐷→ 𝒩(0, 1).

This result can be used to test the hypothesis 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 . The t-statistic for this hypothesis

is

𝑇0 =
̂𝛽𝑗 − 𝛽0

𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
,

which satisfies 𝑇0 = 𝑇 𝐷→ 𝒩(0, 1) under 𝐻0.

The two-sided t-test for 𝐻0 against 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 is given by the test decision

do not reject 𝐻0 if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘),

reject 𝐻0 if |𝑇0| > 𝑡(1− 𝛼
2 ,𝑛−𝑘).

The value 𝑡(1− 𝛼
2 ,𝑛−𝑘) is called the critical value.

This test is asymptotically of size 𝛼:

lim
𝑛→∞

𝑃(we reject 𝐻0|𝐻0 is true) = 𝛼.

We can also use the critical value 𝑧(1− 𝛼
2 ) instead of 𝑡(1− 𝛼

2 ,𝑛−𝑘) to get an asymptotically valid
test of size 𝛼.

If (A5)–(A6) hold, and 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) is used instead of 𝑠𝑒ℎ𝑐( ̂𝛽𝑗), then the t-quantile based t-test
is of exact size 𝛼.
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p-values provide a quick alternative way to make the test decision. The t-test decision rule
is equivalent to

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼,

where
𝑝-value = 2(1 − 𝐹(|𝑇0|)),

and 𝐹 is the CDF of 𝑡𝑛−𝑘 or 𝒩(0, 1), depending on whether the t- or z-quantile critical values
are used.

The p-values can be calculated using 2*(1-pt(abs(T0),n-k)) and 2*(1-pnorm(abs(T0),n-k)),
where T0 is the t-statistic for 𝐻0.

coeftest(fit, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.7095175 0.5666566 -38.312 < 2.2e-16 ***
education 3.1350280 0.0408533 76.739 < 2.2e-16 ***
experience 0.2443250 0.0067036 36.447 < 2.2e-16 ***
black -2.8554345 0.2243222 -12.729 < 2.2e-16 ***
female -7.4362774 0.1603553 -46.374 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest() is another function from the lmtest package and works similarly to coefci().
You can specify different standard errors: coeftest(fit, vcov. = vcovHC, type = "HC1").
coeftest(fit) returns the t-test results for classical standard errors which is identical to the
output of the base-R command summary(fit).

To represent very small numbers where there are n zero digits before the first nonzero digit
after the decimal point, R uses scientific notation in the form e-n. For example, 2.2e-16
means 0.00000000000000022.

5.5 Joint Testing

When multiple hypotheses are to be tested, repeated t-tests will not yield valid inferences.

Each t-test has a probability of falsely rejecting 𝐻0 (type I error) of 𝛼, but if multiple t-tests
are used on different coefficients, then the probability of falsely rejecting at least once (joint
type I error probability) is greater than 𝛼 (multiple testing problem).
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5.5.1 Joint Hypotheses

Consider the general hypothesis
𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟,

where 𝑅𝑅𝑅 is a 𝑞 × 𝑘 matrix with rank(𝑅𝑅𝑅) = 𝑞 and 𝑟𝑟𝑟 is a 𝑞 × 1 vector.

Let’s look at a linear regression with 𝑘 = 3:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝑢𝑖

• Example 1: The hypothesis 𝐻0 ∶ (𝛽2 = 0 and 𝛽3 = 0) implies 𝑞 = 2 constraints and is
translated to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 0
0 0 1) , 𝑟𝑟𝑟 = (0

0) .

• Example 2: The hypothesis 𝐻0 ∶ 𝛽2 + 𝛽3 = 1 implies 𝑞 = 1 constraint and is translated
to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 1) , 𝑟𝑟𝑟 = (1) .

In practice, the most common multiple hypothesis tests are tests of whether multiple coeffi-
cients are equal to zero, which is a test of whether those regressors should be included in the
model.

5.5.2 Wald Test

The Wald distance is the vector 𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽−𝑟𝑟𝑟, and the Wald statistic is the squared standardized
Wald distance vector:

𝑊 = (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).
Under 𝐻0 we have

𝑊 𝐷→ 𝜒2
𝑞.

The test decision for the Wald test:

do not reject 𝐻0 if 𝑊 ≤ 𝜒2
(1−𝛼,𝑞),

reject 𝐻0 if 𝑊 > 𝜒2
(1−𝛼,𝑞),

where 𝜒2
(𝑝,𝑚) is the 𝑝-quantile of the chi-squared distribution with 𝑚 degrees of freedom. 𝜒2

(𝑝,𝑚)
can be returned using qchisq(p,m).
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5.5.3 F-Test

The 𝐹 statistic is the Wald statistic scaled by by the number of constraints:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator. 𝐹(𝑝,𝑚1,𝑚2) can be returned using
qf(p,m1,m2).

For single constraint (𝑞 = 1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 , the Wald test is equivalent

to a t-test using the z-quantile, and the F-test is equivalent to a t-test using the t-quantile.

The Wald and the F-test are asymptotically equivalent and have asymptotic sizes 𝛼 under
(A1)–(A4) when a HC version of the covariance matrix estimator V̂ is used. The 𝐹 test is
slightly more conservative for small samples.

In the special case of homoscedastic and normal errors (A5)–(A6), the 𝐹 test has exact size 𝛼
when 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, similar to the exact t-test.

5.5.4 Testing in R

In our regression from above, we can test whether the two coefficients for experience and
female are both zero. The waldtest() function from the lmtest package allows you to specify
the names of the variables directly.

waldtest(fit, c("experience", "female"), vcov = vcovHC)

Wald test

Model 1: wage ~ education + experience + black + female
Model 2: wage ~ education + black
Res.Df Df F Pr(>F)

1 50737
2 50739 -2 1490.9 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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waldtest(fit, c("experience", "female"), vcov = vcovHC, test = "Chisq")

Wald test

Model 1: wage ~ education + experience + black + female
Model 2: wage ~ education + black
Res.Df Df Chisq Pr(>Chisq)

1 50737
2 50739 -2 2981.8 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An alternative is to fit a nested model and apply the function to the fitted models. The
following command will produce the same output as above:

fit2 = lm(wage ~ education + black, data = cps)
waldtest(fit, fit2, vcov = vcovHC)

User-specified constraints of the general form 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 can be tested with the linearHypothesis()
function from the car package.

5.6 R-codes

methods-sec05.R
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