
4 The Linear Model

The previous section discussed OLS regression from a descriptive perspective. A regression
model puts the regression problem into a stochastic framework.

Let {(𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛} be a sample from some joint population distribution, where 𝑌𝑖 is

individual 𝑖’s dependent variable, and 𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′ is the 𝑘 × 1 vector of individual
𝑖’s regressor variables.

Linear Regression Model

The linear regression model equation for individual 𝑖 = 1, … , 𝑛 is

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝑢𝑖

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖 is the error
term for individual 𝑖. In vector notation, we write

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛. (4.1)

The error term represents further factors that affect the dependent variable and are not in-
cluded in the model. These factors include measurement error, omitted variables, or unob-
served/unmeasured variables.

The expression 𝑚(𝑋𝑋𝑋𝑖) = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 is called the population regression function.

We can use matrix notation to describe the 𝑛 individual regression equations together. Con-
sider the 𝑛 × 1 dependent variable vector 𝑌𝑌𝑌 , the 𝑛 × 𝑘 regressor matrix 𝑋𝑋𝑋, and the vectors of
coefficients and error terms given by

𝛽𝛽𝛽
(𝑘×1)

= ⎛⎜
⎝

𝛽1
⋮

𝛽𝑘

⎞⎟
⎠

, 𝑢𝑢𝑢
(𝑛×1)

= ⎛⎜
⎝

𝑢1
⋮

𝑢𝑛

⎞⎟
⎠

.

The 𝑛 equations of Equation 4.1 can be written together as

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.
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4.1 Assumptions

We assume that (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, satisfies Equation 4.1 with

• (A1) conditional mean independence: 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0
• (A2) random sampling: (𝑌𝑖,𝑋𝑋𝑋′

𝑖) are i.i.d. draws from their joint population distribu-
tion

• (A3) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖 ] < ∞, 0 < 𝐸[𝑋4

𝑖𝑙] < ∞ for all 𝑙 = 1, … , 𝑘
• (A4) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank

• optional: (A5) homoskedasticity: 𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝜎2

• optional: (A6) normal errors: 𝑢𝑖|𝑋𝑋𝑋𝑖 is normally distributed

Assumptions (A1)–(A4) are required and (A5) and (A6) are optional. Model (A1)–(A4) is
called heteroskedastic linear regression model, model (A1)–(A5) is called homoskedas-
tic linear regression model, and model (A1)–(A6) is called normal linear regression
model.

(A1)–(A2) define the properties of the regression model, (A3)–(A4) imply that OLS can be
used to estimate the model, and (A5)–(A6) ensure that classical exact inference can be used
without relying on robust large sample methods.

For all 𝑖, 𝑗 = 1, … , 𝑛, the model has the following properties:

(i) Conditional expectation: (A1) implies

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝑚(𝑋𝑋𝑋𝑖).

(ii) Weak exogeneity: (A1) implies

𝐸[𝑢𝑖] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖𝑙) = 0.

(iii) Strict exogeneity: (A1)+(A2) imply

𝐸[𝑢𝑖|𝑋𝑋𝑋] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑗𝑙) = 0.

(iv) Heteroskedasticity: (A1)+(A2) imply

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢2
𝑖 |𝑋𝑋𝑋𝑖] =∶ 𝜎2

𝑖
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(v) No autocorrelation: (A1)+(A2) imply

𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0, 𝑖 ≠ 𝑗.
The errors have a diagonal conditional covariance matrix:

𝐷𝐷𝐷 ∶= 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

4.2 OLS Estimator

The OLS coefficient vector ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 can be used to estimate 𝛽𝛽𝛽. For all 𝑖 = 1, … , 𝑛
and 𝑙 = 1, … , 𝐾, the OLS estimator has the following properties:

(i) Existence: (A4) implies that 𝑋𝑋𝑋′𝑋𝑋𝑋 is invertible and that ̂𝛽𝛽𝛽 exists.

(ii) Unbiasedness: (A1)+(A2)+(A4) imply

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽.

(iii) Sampling variance: (A1)+(A2)+(A4) imply

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

If (A5) holds as well, then 𝐷𝐷𝐷 = 𝐼𝐼𝐼𝑛 and 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

(iv) Normality: (A1)+(A2)+(A4)+(A6) imply

̂𝛽𝛽𝛽|𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽, 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋])

(v) Consistency: (A1)–(A4) imply

̂𝛽𝛽𝛽
𝑝

→ 𝛽𝛽𝛽 as 𝑛 → ∞
since the bias is zero and the variance asymptotically tends to zero.

(vi) Asymptotic variance: Let 𝑄𝑄𝑄 ∶= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and ΩΩΩ ∶= 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]. (A1)–(A4) imply

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 1
𝑛⏟

→0

( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1

( 1
𝑛𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋⏟

𝑝
→ΩΩΩ

)( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1 𝑝

→ 000,

and
𝑉 𝑎𝑟[√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]

𝑝
→ 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.

If (A5) holds as well, then ΩΩΩ = 𝜎2𝑄𝑄𝑄, and 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1 = 𝜎2𝑄𝑄𝑄−1.
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(vii) Asymptotic normality: (A1)–(A4) imply

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝐷→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

Technical details can be found in Appendix A.

4.3 Marginal Effects

For example, consider the regression model of hourly wage on education (years of schooling):

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2 𝑒𝑑𝑢𝑖 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖] = 0, 𝑖 = 1, … , 𝑛. (4.2)

The population regression function is 𝑚(𝑒𝑑𝑢𝑖) = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖. (A1) implies that

𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖⏟⏟⏟⏟⏟
=𝑚(𝑒𝑑𝑢𝑖)

+ 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟
=0

.

The average wage level of all individuals with 𝑧 years of schooling is 𝛽1 + 𝛽2𝑧.

𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) = 𝐶𝑜𝑣(𝑚(𝑒𝑑𝑢𝑖), 𝑒𝑑𝑢𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝛽2𝑉 𝑎𝑟[𝑒𝑑𝑢𝑖]

+ 𝐶𝑜𝑣(𝑢𝑖, 𝑒𝑑𝑢𝑖)⏟⏟⏟⏟⏟
=0

The coefficient 𝛽2 is identified as

𝛽2 = 𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖)
𝑉 𝑎𝑟[𝑒𝑑𝑢𝑖]

= 𝐶𝑜𝑟𝑟(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) ⋅ 𝑠𝑑(𝑤𝑎𝑔𝑒𝑖)
𝑠𝑑(𝑒𝑑𝑢𝑖)

.

The coefficient describes the correlative relationship between education and wages.

The marginal effect of education is

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝜕𝑒𝑑𝑢𝑖

= 𝛽2.

lm(wage ~ education, data = cps)

Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898
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Interpretation: People with one more year of education are paid on average 2.90 USD more
than people with one year less of education.

The marginal effect is a correlative effect and does not say where exactly a higher wage level
for people with more education comes from. Regression relationships do not necessarily
imply a causal relationship.

People with more education may earn more for a number of reasons. Maybe they are generally
smarter or come from wealthier families, which leads to better paying jobs. Or maybe more
education actually leads to higher earning

Figure 4.1: A DAG (directed acyclic graph) for the correlative and causal effects of edu on
wage

The coefficient 𝛽2 is a measure of how strongly education and earnings are correlated.

This association could be due to other factors that correlate with both wages and education,
such as family background (parental education, family income, ethnicity, structural racism) or
personal background (gender, intelligence).

Notice: Correlation does not imply causation!

To disentangle the causal effect of education on wages from other correlative effects, we can
include control variables.
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4.4 Control Variables

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) it is correlated with the dependent variable (wage, in this scenario),
(ii) correlated with the regressor of interest (education),
(iii) omitted in the regression.

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 𝛽2 in Equation 4.2 measures the correlative or marginal effect, not the causal
effect. This must always be kept in mind when interpreting regression coefficients.

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑒𝑥𝑖 + 𝛽4𝐵𝑙𝑎𝑐𝑘𝑖 + 𝛽5𝑓𝑒𝑚𝑖 + 𝑢𝑖.

In this case,
𝛽2 = 𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑒𝑥𝑖, 𝐵𝑙𝑎𝑐𝑘𝑖, 𝑓𝑒𝑚𝑖]

𝜕𝑒𝑑𝑢𝑖
is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

lm(wage ~ education + experience + black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + black + female,

data = cps)

Coefficients:
(Intercept) education experience black female

-21.7095 3.1350 0.2443 -2.8554 -7.4363
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Interpretation: Given the same experience, racial background, and gender, people with one
more year of education are paid on average 3.14 USD more than people with one year less of
education.

Note: It does not hold other unobservable characteristics (such as ability) or variables not
included in the regression (such as quality of education) fixed, so an omitted variable bias may
still be present.

Good control variables are variables that are determined before the level of education is deter-
mined. Control variables should not be the cause of the dependent variable of interest.

Examples of good controls for education are parental education level, region of residence, or
educational industry/field of study.

A problematic situation is when the control variable is the cause of education. Bad controls
are typically highly correlated with the independent variable of interest and irrelevant to the
causal effect of that variable on the dependent variable.

Examples of bad controls for education are current job position, number of professional
certifications obtained, or number of job offers.

A high correlation of the bad control with the variable education also causes a high variance of
the OLS coefficient for education and leads to an imprecise coefficient estimate. This problem
is called imperfect multicollinearity.

Bad controls make it difficult to interpret causal relationships. They may control away the
effect you want to measure, or they may introduce additional reverse causal effects hidden in
the regression coefficients.

4.5 Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑥𝑖 + 𝛽3𝑒𝑥2
𝑖 + 𝛽4𝑒𝑥3

𝑖 + 𝑢𝑖.

## we focus on Asian people only for illustration
cps.as = cps |> subset(asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
coefficients(fit)
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(Intercept) experience I(experience^2) I(experience^3)
20.4547146896 1.2013241316 -0.0446897909 0.0003937551

plot(wage ~ experience, data = cps.as, ylim = c(0,100))
lines(sort(cps.as$experience),

fitted(fit)[order(cps.as$experience)],
col='red', type='l', lwd=3)
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The marginal effect depends on the years of experience:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑥𝑖]
𝜕𝑒𝑥𝑖

= 𝛽2 + 2𝛽3𝑒𝑥𝑖 + 3𝛽4𝑒𝑥𝑝2
𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.43 + 2 ⋅ (−0.042) ⋅ 10 + 3 ⋅ 0.0003 ⋅ 102 = 0.68.

4.6 Interactions

A linear regression with interaction terms:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑓𝑒𝑚𝑖 + 𝛽4𝑚𝑎𝑟𝑟𝑖 + 𝛽5(𝑚𝑎𝑟𝑟𝑖 ⋅ 𝑓𝑒𝑚𝑖) + 𝑢𝑖
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lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767

The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑓𝑒𝑚𝑎𝑙𝑒𝑖

= 𝛽3 + 𝛽5𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

Interpretation: Given the same education, unmarried women are paid on average 3.26 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

= 𝛽4 + 𝛽5𝑓𝑒𝑚𝑎𝑙𝑒𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

4.7 Logarithms

In the logarithmic specification

log(𝑤𝑎𝑔𝑒𝑖) = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝑢𝑖

we have
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]

𝜕𝑒𝑑𝑢𝑖
= 𝛽2.

This implies
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

absolute
change

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.
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That is, 𝛽2 gives the average absolute change in log wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:

𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] ≈ exp(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but the difference is small unless the data is highly skewed.

The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is

𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])
𝜕𝑒𝑑𝑢𝑖

= 𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])
𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.

linear_model <- lm(wage ~ education, data = cps.as)
log_model <- lm(log(wage) ~ education, data = cps.as)
log_model

Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")

Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication

𝑌 = 𝛽1 + 𝛽2 log(𝑋) + 𝑢
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and the log-log specification

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Linear-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 0.01𝛽2 higher 𝑌 .

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

4.8 R-codes

methods-sec04.R
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