
3 Least Squares

3.1 Regression function

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also known
the regressand or response variable) as a function of the 𝑘-variate vector of the independent
variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship is formulated
as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a corresponding dataset
for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. To avoid
the unrealistic constraint of the regression line passing through the origin, a constant term
(intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining continuous and categor-
ical variables), and logarithmic transformations.

36

3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

𝑢̂𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

3.3 Regression plots

Let’s examine the linear relationship between a penguin’s body mass and its flipper length:

data(penguins, package="palmerpenguins")
fit1 = lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)
coefficients(fit1)

(Intercept) flipper_length_mm
-5780.83136 49.68557

The fitted regression line is
−5781 + 49.69 flipperlength.

We can plot the regression line over a scatter plot of the data:

37

par(mfrow = c(1,2), cex=0.8)
plot(penguins$flipper_length_mm, penguins$body_mass_g)
abline(fit1, col="blue")
plot(fit1$model$flipper_length_mm, residuals(fit1))
abline(0,0,col="blue")

170 190 210 230

30
00

45
00

60
00

penguins$flipper_length_mm

pe
ng

ui
ns

$b
od

y_
m

as
s_

g

170 190 210 230

−
10

00
0

50
0

fit1$model$flipper_length_mm
re

si
du

al
s(

fit
1)

Let’s include bill depth as an additional regressor:

fit2= lm(formula = body_mass_g ~ flipper_length_mm + bill_depth_mm,
data = penguins)

coefficients(fit2)

(Intercept) flipper_length_mm bill_depth_mm
-6541.90750 51.54144 22.63414

A 3D plot provides a visual representation of the resulting regression line (surface):

library(scatterplot3d) # package for 3d plots
Y = penguins$body_mass_g
X_2 = penguins$flipper_length_mm
X_3 = penguins$bill_depth_mm
plot3d <- scatterplot3d(x = penguins$flipper_length_mm,

y = penguins$bill_depth_mm,
z = penguins$body_mass_g,
angle = 60, scale.y = 0.8, pch = 16,
color ="red", xlab = "flipper_length_mm",
ylab = "bill_depth_mm",
main ="OLS Regression Surface")

plot3d$plane3d(fit2, lty.box = "solid", col=gray(.5), draw_polygon=TRUE)

38

OLS Regression Surface

170 180 190 200 210 220 230 24020
003

00
040

005
00

060
007

00
0

12
14

16
18

20
22

flipper_length_mm

bi
ll_

de
pt

h_
m

m

pe
ng

ui
ns

$b
od

y_
m

as
s_

g

Adding the additional predictor bill length gives a model with dimensions beyond visual rep-
resentation:

fit3 = lm(body_mass_g ~ flipper_length_mm + bill_depth_mm + bill_length_mm,
data = penguins)

coefficients(fit3)

(Intercept) flipper_length_mm bill_depth_mm bill_length_mm
-6424.76470 50.26922 20.04953 4.16182

The fitted regression line now includes three predictors and four coefficients:

−6425 + 50.27 flipperlength + 20.05 billdepth + 4.16 billlength

For models with multiple regressors, fitted values and residuals can still be visualized:

par(mfrow = c(1,2), cex=0.8)
plot(fitted.values(fit3))
plot(residuals(fit3))

The pattern of fitted values arises because the observations are sorted by penguin species.

39

0 50 150 250 350

30
00

40
00

50
00

Index

fit
te

d.
va

lu
es

(f
it3

)

0 50 150 250 350

−
10

00
0

50
0

Index

re
si

du
al

s(
fit

3)

3.4 Matrix notation

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

𝑢̂1
⋮

𝑢̂𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 .

40

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

A large ℎ𝑖𝑖 occurs when the observation 𝑖 has a big influence on the regression line, e.g., the
last observation in the following dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")

0 100 200 300 400 500

20
00

60
00

10
00

0

OLS regression line with and without last observation

X

Y

hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646

41

3.5 R-squared

The residuals satisfy 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 = 000 and 𝑌𝑌𝑌
′

̂𝑢𝑢𝑢 = 0. The intercept in the regression model ensures
∑𝑛

𝑖=1 𝑢̂𝑖 = 0 and ∑𝑛
𝑖=1 𝑌𝑖 = ∑𝑛

𝑖=1 𝑌𝑖.

Therefore, the sample variances have the following representations:

Dependent variable 𝜎̂2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2

Fitted values 𝜎̂2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2

Residuals 𝜎̂2
𝑢̂ = 1

𝑛 ∑𝑛
𝑖=1 𝑢̂2

𝑖
Analysis of variance formula 𝜎̂2

𝑌 = 𝜎̂2
𝑌 + 𝜎̂2

𝑢̂

The larger the proportion of the explained sample variance, the better the fit of the OLS
regression. This motivates the definition of the R-squared coefficient:

𝑅2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2 = 1 − ∑𝑛

𝑖=1 𝑢̂2
𝑖

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2 .

The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . Equivalently,
it can be expressed as: 𝑅2 = 𝜎̂2

𝑌 /𝜎̂2
𝑌 or 𝑅2 = 1 − 𝜎̂2

𝑢̂/𝜎̂2
𝑌 . We have 0 ≤ 𝑅2 ≤ 1.

In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.

We lose 𝑘 degrees of freedom in the OLS regression since we have 𝑘 regressors (𝑘 linear re-
strictions). Similar to the adjusted sample variance of 𝑌 , 𝑠2

𝑌 = 1
𝑛−1 ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌)2, where

42

we adjust for the fact that we lose 1 degree of freedom due to the sample mean (one linear
restriction), the adjusted sample variance of the residuals is

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 𝑢̂2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)2 = 1 − 𝑠2

𝑢̂
𝑠2

𝑌
.

The squareroot of the adjusted sample variance of the residuals is called the standard error
of the regression (SER) or residual standard error:

𝑆𝐸𝑅 ∶= 𝑠𝑢̂ = √ 1
𝑛 − 𝑘

𝑛
∑
𝑖=1

𝑢̂2
𝑖 .

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

The commands summary(fit)$r.squared and summary(fit)$adj.r.squared return the
R-squared and adjusted R-squared values, respectively. The 𝑆𝐸𝑅 can be returned by
summary(fit)$sigma.

The stargazer() function can be used to produce nice regression outputs:

library(stargazer)

stargazer(fit1, fit2, fit3, type="latex", report="vc*", omit.stat = "f",
star.cutoffs = NA, df=FALSE, omit.table.layout = "n",
digits = 4, header = FALSE)

3.6 Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.

43

Table 3.2

Dependent variable:
body_mass_g

(1) (2) (3)
flipper_length_mm 49.6856 51.5414 50.2692

bill_depth_mm 22.6341 20.0495

bill_length_mm 4.1618

Constant −5,780.8310 −6,541.9080 −6,424.7650

Observations 342 342 342
R2 0.7590 0.7610 0.7615
Adjusted R2 0.7583 0.7596 0.7594
Residual Std. Error 394.2782 393.1784 393.4048

par(mfrow=c(1,2))
k=n=2
Y = c(0.7,-1.0)
X = c(1.9,0.8)
fit1 = lm(Y~X)
plot(X,Y, main="OLS with k=n=2")
abline(fit1)
k=n=3
Some given data
Y = c(0.7,-1.0,-0.2)
X_2 = c(1.9,0.8,1.25)
X_3 = c(66, 62, 59)
fit2 = lm(Y ~ X_2 + X_3)
plot3d <- scatterplot3d(x = X_2, y = X_3, z = Y,

angle = 33, scale.y = 0.8, pch = 16,
color ="red",
xlab = "X_2",
ylab = "X_3",
main ="OLS with k=n=3")

plot3d$plane3d(fit2, lty.box = "solid", col=gray(.5), draw_polygon=TRUE)

44

0.8 1.2 1.6

−
1.

0
0.

0

OLS with k=n=2

X

Y

OLS with k=n=3

0.81.01.21.41.61.82.0−
1.

0−
0.

5 0
.0

 0
.5

 1
.0

5960616263646566

X_2

X
_3Y

If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line, but the problem of a perfect
fit is still present. If 𝑘 > 𝑛, there exists no OLS solution because 𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible.
Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional regressions.

3.7 Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.

Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

Multicollinearity means that at least one regressor is redundant and can be dropped.

45

3.8 Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
add a dummy for each penguin species:

library(fastDummies)
penguins.new = dummy_cols(penguins,select_columns = "species")
fit4 = lm(body_mass_g ~ flipper_length_mm + species_Chinstrap

+ species_Gentoo + species_Adelie, data=penguins.new)
coefficients(fit4)

(Intercept) flipper_length_mm species_Chinstrap species_Gentoo
-4031.4769 40.7054 -206.5101 266.8096

species_Adelie
NA

Here, the dummy variables for penguin species are collinear with the intercept variable because
𝐷𝑐ℎ𝑖𝑛𝑠𝑡𝑟𝑎𝑝 + 𝐷𝑔𝑒𝑛𝑡𝑜𝑜 + 𝐷𝑎𝑑𝑒𝑙𝑖𝑒 = 1, leading to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋. The dummy variable
𝐷𝑎𝑑𝑒𝑙𝑖𝑒 is redundant because its value can always be recovered from 𝐷𝑔𝑒𝑛𝑡𝑜𝑜 and 𝐷𝑐ℎ𝑖𝑛𝑠𝑡𝑟𝑎𝑝.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Note that the coefficient for species Adelie is NA.

Alternatively, we can incorporate the factor variable species directly in the regression formula
as lm() automatically generates the correct amount of dummy variables:

fit5 = lm(body_mass_g ~ flipper_length_mm + species, data=penguins)
coefficients(fit5)

(Intercept) flipper_length_mm speciesChinstrap speciesGentoo
-4031.4769 40.7054 -206.5101 266.8096

3.9 R-codes

methods-sec03.R

46

