
2 Summary Statistics

In this section you find an overview of the most important summary statistics commands. In
the table below, your_data represents some univariate data (vector), and your_df represents
a data.frame of multivariate data (matrix).

Statistic Command
Sample Size (n) length(your_data)
Maximum Value max(your_data)
Minimum Value min(your_data)
Total Sum sum(your_data)
Mean mean(your_data)
Variance var(your_data)
Standard Deviation sd(your_data)
Skewness skewness(your_data) (requires moments package)
Kurtosis kurtosis(your_data) (requires moments package)
Order statistics sort(your_data)
Empirical CDF ecdf(your_data)
Median median(your_data)
p-Quantile quantile(your_data, p)
Boxplot boxplot(your_data)
Histogram hist(your_data)
Kernel density estimator plot(density(your_data))
Covariance cov(your_data1, your_data2)
Correlation cor(your_data1, your_data2)
Mean vector colMeans(your_df)
Covariance matrix cov(your_df)
Correlation matrix cor(your_df)

Note: Ensure that your data does not contain missing values (NA’s) for these commands. Use
na.omit() or include na.rm=TRUE in functions to handle missing data.
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2.1 Sample moments

Mean

The sample mean (arithmetic mean) is the most common measure of central tendency:

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

In i.i.d. samples, it converges in probability to the expected value as sample size grows (law
of large numbers). I.e., it is a consistent estimator for the population mean:

𝑌
𝑝

→ 𝐸[𝑌 ] as 𝑛 → ∞.

The law of large numbers also holds for stationary time series with 𝛾(𝜏) → 0 as 𝜏 → ∞.

Variance

The variance measures the spread around the mean. The sample variance is

�̂�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2,

and the adjusted sample variance is

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

Note that var(your_data) computes 𝑠2
𝑌 , which is the conventional estimator for the popula-

tion variance
𝑉 𝑎𝑟[𝑌 ] = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = 𝐸[𝑌 2] − 𝐸[𝑌 ]2.

𝑠2
𝑌 is unbiased whereas �̂�2

𝑌 is biased but has a lower sampling variance. For i.i.d. samples,
both versions are consistent estimators for the population variance.

Standard deviation

The standard deviation, the square root of the variance, is a measure of dispersion in the
original unit of data. It quantifies the average distance data points typically deviate from the
mean of their distribution.
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The sample standard deviation and its adjusted version are the square roots of the correspond-
ing variance formulas:

�̂�𝑌 = √𝑌 2 − 𝑌 2, 𝑠𝑌 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2

Note that sd(your_data) computes 𝑠𝑌 and not �̂�𝑌 . Both versions are consistent estimators
for the population standard deviation 𝑠𝑑(𝑌 ) = √𝑉 𝑎𝑟[𝑌 ] for i.i.d. samples.

Skewness

The skewness is a measure of asymmetry around the mean. The sample skewness is

𝑠𝑘𝑒𝑤 = 1
𝑛�̂�3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

It is a consistent estimator for the population skewness

𝑠𝑘𝑒𝑤 = 𝐸[(𝑌 − 𝐸[𝑌 ])3]
𝑠𝑑(𝑌 )3 .

A non-zero skewness indicates an asymmetric distribution, with positive values indicating a
right tail and negative values a left tail. Below you find an illustration using density func-
tions:

Positive skewNegative skew

Kurtosis

Kurtosis measures the heaviness of the tails of a distribution. It indicates how likely extreme
outliers are. The sample kurtosis is

𝑘𝑢𝑟𝑡 = 1
𝑛�̂�4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.

It is a consistent estimator for the population kurtosis

𝑘𝑢𝑟𝑡 = 𝐸[(𝑌 − 𝐸[𝑌 ])4]
𝑉 𝑎𝑟[𝑌 ]2 .
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The reference value is 3, which is the kurtosis of the standard normal distribution 𝒩(0, 1).
Values significantly above 3 indicate a distribution with heavy tails, such as the t-distribution
𝑡(5) with a kurtosis of 9, implying a higher likelihood of outliers compared to 𝒩(0, 1). Con-
versely, a distribution with kurtosis significantly below 3, such as the uniform distribution
(kurt = 1.8), is called light-tailed, indicating fewer outliers. Both skewness and kurtosis are
unit free measures.

Below you find the probability densities of the 𝒩(0, 1) (solid) and the 𝑡(5) (dashed) distribu-
tions:
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Higher Moments

The 𝑟-th sample moment is

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .

The sample mean is the first sample moment. The variance is the second minus the first
squared sample moment (centered sample moment). The standard deviation, skewness, and
kurtosis are also functions of the first four sample moments.

library(moments)
data(penguins, package="palmerpenguins")
Y = na.omit(penguins$body_mass_g)
length(Y)
max(Y)
min(Y)
sum(Y)
mean(Y)
var(Y)
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sd(Y)
skewness(Y)
kurtosis(Y)

2.2 Empirical distribution

The distribution 𝐹 of a random variable 𝑌 is defined by its cumulative distribution func-
tion (CDF)

𝐹(𝑎) = 𝑃(𝑌 ≤ 𝑎), 𝑎 ∈ ℝ.
With knowledge of 𝐹(⋅), you can calculate the probability of 𝑌 falling within any interval
𝐼 ⊆ ℝ, or any countable union of such intervals, by applying the rules of probability.

The empirical cumulative distribution function (ECDF) is the sample-based counterpart
of the CDF. It represents the proportion of observations within the sample that are less than
or equal to a certain value 𝑎. To define the ECDF in mathematical terms, we use the concept
of order statistics 𝑌(ℎ), which is the sample data arranged in ascending order such that

𝑌(1) ≤ 𝑌(2) ≤ … ≤ 𝑌(𝑛).

You can obtain the order statistics for your dataset using sort(your_data).

The ECDF is then defined as

𝐹(𝑎) =
⎧{
⎨{⎩

0 for 𝑎 ∈ ( − ∞, 𝑌(1)),
𝑘
𝑛 for 𝑎 ∈ [𝑌(𝑘), 𝑌(𝑘+1)),
1 for 𝑎 ∈ [𝑌(𝑛), ∞).

The ECDF is always a step function with steps becoming arbitrarily small for continuous
distributions as 𝑛 increases. The ECDF is a consistent estimator for the CDF if the sample is
i.i.d. (Glivenko–Cantelli theorem):

sup
𝑎∈ℝ

|𝐹 (𝑎) − 𝐹(𝑎)|
𝑝

→ 0 as 𝑛 → ∞.

data(penguins, package="palmerpenguins")
plot(ecdf(penguins$bill_length_mm))

Have a look at the ECDF’s of the variables wage, education, and female from the cps data.
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2.3 Sample quantiles

Median

The median is a central value that splits the distribution into two equal parts.

For a continuous distribution, the population median is the value 𝑚𝑒𝑑 such that 𝐹(𝑚𝑒𝑑) = 0.5.
In discrete distributions, if 𝐹 is flat where it takes the value 0.5, the median isn’t uniquely
defined as any value within this flat region could technically satisfy the median condition
𝐹(𝑚𝑒𝑑) = 0.5.

The empirical median of a sorted dataset is found at the point where the ECDF reaches 0.5.
For an even-sized dataset, the median is the average of the two central observations:

𝑚𝑒𝑑 = {𝑌( 𝑛+1
2 ) if 𝑛 is odd

1
2(𝑌( 𝑛

2 ) + 𝑌( 𝑛
2 +1)) if 𝑛 is even

The median corresponds to the 0.5-quantile of the distribution.

Quantile

The population 𝑝-quantile is the value 𝑞𝑝 such that 𝐹(𝑞𝑝) = 𝑝. Similarly to the population
median, population quantiles may not be unique for discrete distributions.
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The emirical 𝑝-quantile ̂𝑞𝑝 is a value at which 𝑝 percent of the data falls below it. It can be
computed as the linear interpolation at ℎ = (𝑛 − 1)𝑝 + 1 between 𝑌(⌊ℎ⌋) and 𝑌(⌈ℎ⌉):

̂𝑞𝑝 = 𝑌(⌊ℎ⌋) + (ℎ − ⌊ℎ⌋)(𝑌(⌈ℎ⌉) − 𝑌(⌊ℎ⌋)).

This interpolation scheme is standard in R, although multiple approaches exist for estimating
quantiles (see here).

Boxplot

Boxplots graphically represent the empirical distribution.

The box indicates the interquartile range (𝐼𝑄𝑅 = ̂𝑞0.75 − ̂𝑞0.25) and the median of the dataset.
The upper whisker indicates the largest observation that does not exceed ̂𝑞0.75 + 1.5𝐼𝑄𝑅, and
the lower whisker is the smallest observation that is greater or equal to ̂𝑞0.25 − 1.5𝐼𝑄𝑅. The
points beyond the 1.5𝐼𝑄𝑅 distance are plotted as single points and indicate potential outliers
or the presence of a skewed or heavy tailed distribution.

Boxplots are helpful for comparing distributions across groups, such as differences in body
mass or bill length among penguin species, or wage distributions by gender:

par(mfrow = c(1,2), cex=0.9)
boxplot(body_mass_g ~ species, data = penguins)
boxplot(bill_length_mm ~ species, data = penguins)
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boxplot(wage ~ female, data = cps)
boxplot(education ~ female, data = cps)
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2.4 Density estimation

A continuous random variable 𝑌 is characterized by a continuously differentiable CDF 𝐹(𝑎) =
𝑃(𝑌 ≤ 𝑎). The derivative is known as the probability density function (PDF), defined as
𝑓(𝑎) = 𝐹 ′(𝑎). A simple method to estimate 𝑓 is through the construction of a histogram.

Histogram

A histogram divides the data range into 𝐵 bins each of equal width ℎ and counts the number
of observations 𝑛𝑗 within each bin. The histogram estimator of 𝑓(𝑎) for 𝑎 in the 𝑗-th bin is

̂𝑓(𝑎) = 𝑛𝑗
𝑛ℎ.

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1. The appearance and accuracy of a histogram depend on the
choice of bin width ℎ.

Let’s consider the subset of the CPS dataset of Asian women, excluding those with wages over
$80 for illustrative purposes:
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library(tidyverse)
cps.new = cps |> filter(asian == 1, female == 1, wage < 80)
wage = cps.new$wage
par(mfrow = c(1,3))
hist(wage, breaks = seq(0,80,by=20), probability = TRUE, main = "h=20")
hist(wage, breaks = seq(0,80,by=10), probability = TRUE, main = "h=10")
hist(wage, breaks = seq(0,80,by=1), probability = TRUE, main = "h=1")
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Running hist(wage, probability=TRUE) automatically selects a suitable bin width.
hist(wage)$breaks shows the automatically selected break poins, where the bin width is the
distance between break points.

Kernel density estimator

Suppose we want to estimate the wage density at 𝑎 = 22 and consider the histogram density
estimate in the figure above with ℎ = 10. It is based on the frequency of observations in the
interval [20, 30) which is a skewed window about 𝑎 = 22.

It seems more sensible to center the window at 22, for example [17, 27) instead of [20, 30). It
also seems sensible to give more weight to observations close to 22 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of 𝑓(𝑎), which is a smooth version of the
histogram:

̂𝑓(𝑎) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑋𝑖 − 𝑎
ℎ ).
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Here, 𝐾(𝑢) represents a weighting function known as a kernel function, and ℎ > 0 is the
bandwidth. A common choice for 𝐾(𝑢) is the Gaussian kernel:

𝐾(𝑢) = 𝜙(𝑢) = 1√
2𝜋 exp(−𝑢2/2).
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The density() function in R automatically selects an optimal bandwidth, but it also allows
for manual bandwidth specification via density(wage, bw = your_bandwidth).

2.5 Sample covariance

Consider a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 represented as an 𝑛 × 𝑘 data matrix
𝑋𝑋𝑋 = (𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛)′. For example, the following subset of the penguins dataset:

peng = penguins |>
select(bill_length_mm, flipper_length_mm, body_mass_g) |>
na.omit()

Sample mean vector

The sample mean vector 𝑋𝑋𝑋 is defined as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖.
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It is a consistent estimator for the population mean vector 𝐸[𝑋𝑋𝑋𝑖] if the sample is i.i.d..

colMeans(peng)

bill_length_mm flipper_length_mm body_mass_g
43.92193 200.91520 4201.75439

Sample covariance matrix

The adjusted sample covariance matrix Σ̂ΣΣ is defined as the 𝑘 × 𝑘 matrix

Σ̂ΣΣ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′,

where its (ℎ, 𝑙) element is the pairwise sample covariance of variable ℎ and 𝑙 given by

𝑠ℎ,𝑙 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙), 𝑋𝑋𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

If the sample is i.i.d., Σ̂ΣΣ is an unbiased and consistent estimator for the population covariance
matrix 𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′].

cov(peng)

bill_length_mm flipper_length_mm body_mass_g
bill_length_mm 29.80705 50.37577 2605.592
flipper_length_mm 50.37577 197.73179 9824.416
body_mass_g 2605.59191 9824.41606 643131.077

Sample correlation matrix

The correlation matrix is the matrix containing the pairwise sample correlation coeffi-
cients

𝑟ℎ,𝑙 = ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙)2
.

cor(peng)
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bill_length_mm flipper_length_mm body_mass_g
bill_length_mm 1.0000000 0.6561813 0.5951098
flipper_length_mm 0.6561813 1.0000000 0.8712018
body_mass_g 0.5951098 0.8712018 1.0000000

Both the covariance and correlation matrices are symmetric The scatterplots of the full dataset
visualize the positive correlations between the variables in the penguins data:

plot(peng)
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2.6 R-codes

methods-sec02.R
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Part II

B) Linear Regression
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