
1 Data

1.1 Datasets

A univariate dataset is a sequence of observations 𝑌1, … , 𝑌𝑛. These 𝑛 observations can be
organized into the data vector 𝑌𝑌𝑌 , represented as 𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)′. For example, if you
conduct a survey and ask five individuals about their hourly earnings, your data vector might
look like

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22
23.85
10.00
6.39
7.42

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Typically we have data on more than one variable, such as years of education and the gender.
Categorical variables are often encoded as dummy variables, which are binary variables. The
female dummy variable is defined as 1 if the gender of the person is female and 0 otherwise.

person wage education female
1 18.22 16 1
2 23.85 18 0
3 10.00 16 1
4 6.39 13 0
5 7.42 14 0

A 𝑘-variate dataset is a collection of 𝑛 vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 containing data on 𝑘 variables.
The 𝑖-th vector 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′ contains the data on all 𝑘 variables for individual 𝑖. Thus,
𝑋𝑖𝑗 represents the value for the 𝑗-th variable of individual 𝑖.
The full 𝑘-variate dataset is structured in the 𝑛 × 𝑘 data matrix 𝑋𝑋𝑋:

𝑋𝑋𝑋 = ⎛⎜
⎝

𝑋𝑋𝑋′
1

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟
⎠

= ⎛⎜
⎝

𝑋11 … 𝑋1𝑘
⋮ ⋱ ⋮

𝑋𝑛1 … 𝑋𝑛𝑘

⎞⎟
⎠

The 𝑖-th row in 𝑋𝑋𝑋 corresponds to the values from 𝑋𝑋𝑋𝑖. Since 𝑋𝑋𝑋𝑖 is a column vector, we use the
transpose notation 𝑋𝑋𝑋′

𝑖, which is a row vector. The data matrix and vectors for our example

11

are:

𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22 16 1
23.85 18 0
10.00 16 1
6.39 13 0
7.42 14 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋1 = ⎛⎜
⎝

18.22
16
1

⎞⎟
⎠

,𝑋𝑋𝑋2 = ⎛⎜
⎝

23.85
18
0

⎞⎟
⎠

, …

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, please consult the following re-
sources:

Crash Course on Matrix Algebra:
matrix.svenotto.com
Section 19.1 of the Stock and Watson book also provides a brief overview of matrix
algebra concepts.

1.2 R programming language

The best way to learn statistical methods is to program and apply them yourself. Throughout
this course, we will use the R programming language for implementing empirical methods and
analyzing real-world datasets.

If you are just starting with R, it is crucial to familiarize yourself with its basics. Here’s an
introductory tutorial, which contains a lot of valuable resources:

Getting Started with R:
rintro.svenotto.com

For those new to R, I also recommend the interactive R package SWIRL, which offers an excel-
lent way to learn directly within the R environment. Additionally, two highly recommended
online books are Hands-On Programming with R (with focus on programming) and R for Data
Science (with focus on data analysis).

One of the best features of R is its extensive ecosystem of packages contributed by the statis-
tical community. You find R packages for almost any statistical method out there and many
statisticians provide R packages to accompany their research.

12

Maybe the most frequently used package is the tidyverse package, which provides a compre-
hensive suite of data management and visualization tools. You can install the package with
the command install.packages("tidyverse") and you can load it with

library(tidyverse)

at the beginning of your code. We will explore several additional packages in the course of the
lecture.

1.3 Datasets in R

R includes many built-in datasets and packages of datasets that can be loaded directly into
your R environment. For illustration, we consider the penguins dataset available in the
palmerpenguins package. To load this dataset into your R session, simply use:

data(penguins, package = "palmerpenguins")

class(penguins)

[1] "tbl_df" "tbl" "data.frame"

The penguins dataset is stored as a data.frame, R’s most common data storage class for
tabular data as in 𝑋𝑋𝑋. It organizes data in the form of a table, with variables as columns and
observations as rows. The penguins object is also identified as a tibble (or tbl_df), the
tidyverse version of a data.frame.

To inspect the structure of your dataset, you can use str() or glimpse():

str(penguins)

tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

13

The dataset contains variables of various types: fct(factor) for categorical data,
dbl(numeric) for real or continuous data, and int(integer) for integer or discrete
data. The head() function displays its first few rows:

head(penguins)

A tibble: 6 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
i 2 more variables: sex <fct>, year <int>

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example:

penguins |> select(body_mass_g, bill_length_mm, species) |> summary()

body_mass_g bill_length_mm species
Min. :2700 Min. :32.10 Adelie :152
1st Qu.:3550 1st Qu.:39.23 Chinstrap: 68
Median :4050 Median :44.45 Gentoo :124
Mean :4202 Mean :43.92
3rd Qu.:4750 3rd Qu.:48.50
Max. :6300 Max. :59.60
NA's :2 NA's :2

The summary() function presents a concise overview, showing absolute frequencies for cate-
gorical variables and descriptive statistics for numerical variables, along with information on
missing values (NA). To exclude all rows with missing values, we can use na.omit(penguins).

A dummy variable for the penguin species Gentoo can be created with the following com-
mand:

gentoo = ifelse(penguins$species == "Gentoo", 1, 0)

14

The $ sign accesses a specific column of a data frame by name, as in penguins$species to
select the variable species from penguins.

To convert factor variables into dummy variables efficiently, the fastDummies package’s
dummy_cols() function can be used. Let’s create dummy variables for each of the three
species.

library(fastDummies)
penguins.new = dummy_cols(penguins,select_columns = "species")

Scatterplots provide further insights:

plot(bill_length_mm ~ body_mass_g, data = penguins,
xlab = "body mass (g)", ylab = "bill length (mm)")

3000 3500 4000 4500 5000 5500 6000

35
40

45
50

55
60

body mass (g)

bi
ll

le
ng

th
 (

m
m

)

We can assign unique colors to each species:

colors = c("red", "blue", "purple")
plot(bill_length_mm ~ body_mass_g, col = colors[species], data = penguins,

xlab = "body mass (g)", ylab = "bill length (mm)")
legend("bottomright", legend = levels(penguins$species),

fill = colors, title = "Species")

15

3000 3500 4000 4500 5000 5500 6000

35
40

45
50

55
60

body mass (g)

bi
ll

le
ng

th
 (

m
m

)

Species

Adelie
Chinstrap
Gentoo

1.4 Importing data

The internet serves as a vast repository for data in various formats, with csv (comma-separated
values), xlsx (Microsoft Excel spreadsheets), and txt (text files) being the most commonly
used.

Many organizations, such as the German Bundesbank, the German Federal Statistical Office,
the ECB (European Central Bank), Eurostat, and FRED (Federal Reserve Economic Data),
offer economic datasets in these formats. These datasets can be accessed through their websites
or via Application Programming Interfaces (APIs), which allow direct downloading of data into
R. Accessing data via APIs often requires registering for an API token on the organization’s
website.

R supports various functions for different data formats:

• read.csv() for reading comma-separated values
• read.csv2() for semicolon-separated values (adopting the German data convention of

using ‘,’ as the decimal mark)
• read.table() for whitespace-separated files
• read_excel() for Microsoft Excel files (requires the readxl package)
• read_stata() for STATA files (requires the haven package)

The rvest package provides web scraping tools to extract data directly from HTML web
pages.

In academic writing, it is crucial to provide enough information about data sources to ensure
transparency and reproducibility.

16

Let’s explore the CPS dataset from Bruce Hansen’s website. The Current Population Survey
(CPS) is a monthly survey conducted by the U.S. Census Bureau for the Bureau of Labor
Statistics, primarily used to measure the labor force status of the U.S. population.

• Dataset: cps09mar.txt
• Description: cps09mar_description.pdf

cps = read.table("https://users.ssc.wisc.edu/~bhansen/econometrics/cps09mar.txt",
col.names=c("age","female","hisp","education","earnings","hours",

"week", "union","uncov","region","race","marital")) |>
mutate(race = as.factor(race),

region = as.factor(region),
marital = as.factor(marital),
experience = (age - education - 6), #years since graduation
wage = earnings/(week*hours), #wage per hours
married = ifelse(marital %in% c(1,2), 1, 0), #dummy
college = ifelse(education >= 14, 1, 0),
black = ifelse(race %in% c(2,6,10,11,12,15,16,19), 1, 0),
asian = ifelse(race %in% c(4,8,11,13,14,16,17,18,19), 1, 0))

1.5 Data types

The most common types of econonomic data are:

• Cross-sectional data: Data collected on many entities without regard to time.

• Time series data: Data on a single entity collected over multiple time periods.

• Panel data: Data collected on multiple entities over multiple time points, combining
features of both cross-sectional and time series data.

The cps data is an example of a cross-sectional dataset.

str(cps)

'data.frame': 50742 obs. of 18 variables:
$ age : int 52 38 38 41 42 66 51 49 33 52 ...
$ female : int 0 0 0 1 0 1 0 1 0 1 ...
$ hisp : int 0 0 0 0 0 0 0 0 0 0 ...
$ education : int 12 18 14 13 13 13 16 16 16 14 ...
$ earnings : int 146000 50000 32000 47000 161525 33000 37000 37000 80000 32000 ...
$ hours : int 45 45 40 40 50 40 44 44 40 40 ...

17

$ week : int 52 52 51 52 52 52 52 52 52 52 ...
$ union : int 0 0 0 0 1 0 0 0 0 0 ...
$ uncov : int 0 0 0 0 0 0 0 0 0 0 ...
$ region : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
$ race : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ marital : Factor w/ 7 levels "1","2","3","4",..: 1 1 1 1 1 5 1 1 1 1 ...
$ experience: num 34 14 18 22 23 47 29 27 11 32 ...
$ wage : num 62.4 21.4 15.7 22.6 62.1 ...
$ married : num 1 1 1 1 1 0 1 1 1 1 ...
$ college : num 0 1 1 0 0 0 1 1 1 1 ...
$ black : num 0 0 0 0 0 0 0 0 0 0 ...
$ asian : num 0 0 0 0 0 0 0 0 0 0 ...

My repository teachingdata contains some recent time series datasets, for instance, the nominal
GDP growth of Germany:

data("gdpgr", package="teachingdata")
str(gdpgr)

Time-Series [1:128] from 1992 to 2024: 0.0874 0.0651 0.0733 0.0586 0.0201 ...

The dataset Fatalities is a panel dataset. It contains variables related to traffic fatalities
across different states and years in the United States:

data(Fatalities, package = "AER")
str(Fatalities)

'data.frame': 336 obs. of 34 variables:
$ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
$ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
$ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
$ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
$ income : num 10544 10733 11109 11333 11662 ...
$ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
$ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
$ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
$ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
$ drinkage : num 19 19 19 19.7 21 ...
$ dry : num 25 23 24 23.6 23.5 ...
$ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
$ miles : num 7234 7836 8263 8727 8953 ...

18

$ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
$ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
$ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
$ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
$ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
$ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
$ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
$ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
$ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
$ afatal : num 309 342 305 277 361 ...
$ pop : num 3942002 3960008 3988992 4021008 4049994 ...
$ pop1517 : num 209000 202000 197000 195000 204000 ...
$ pop1820 : num 221553 219125 216724 214349 212000 ...
$ pop2124 : num 290000 290000 288000 284000 263000 ...
$ milestot : num 28516 31032 32961 35091 36259 ...
$ unempus : num 9.7 9.6 7.5 7.2 7 ...
$ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
$ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...

1.6 Random variables

Data is usually the result of a random experiment. The gender of the next person you meet,
the daily fluctuation of a stock price, the monthly music streams of your favourite artist,
the annual number of pizzas consumed - all of this information involves a certain amount of
randomness.

In statistical sciences, we interpret a univariate dataset 𝑌1, … , 𝑌𝑛 as a sequence of random
variables. Similarly, a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is viewed as a sequence of random
vectors.

Cross-sectional data is typically characterized by an identical distribution across its individ-
ual observations, meaning each element in the sequence 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 has the same distribution
function.

For example, if 𝑌1, … , 𝑌𝑛 represent the wage levels of different individuals in Germany, each
𝑌𝑖 is drawn from the same distribution 𝐹 , which in this context is the wage distribution across
the country. Similarly, if 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 are bivariate random variables containing wages and years
of education for individuals, each 𝑋𝑋𝑋𝑖 follows the same bivariate distribution 𝐺, which is the
joint distribution of wages and education levels.

19

A primary goal of econometric methods and statistical inference is to gain insights about fea-
tures of these true but unknown population distributions 𝐹 or 𝐺 using the available data.
Econometric methods require certain assumptions about the sampling process and the under-
lying population distributions. Thus, a solid knowledge of probability theory is essential for
econometric modelling.

For a recap on probability theory for econometricians, consider the following refresher:

Probability Theory for Econometricians:
https://probability.svenotto.com/
Section 2 of the Stock and Watson book also provides a review of the most important
concepts.

1.7 Sampling

The ideal scenario for data collection involves simple random sampling, where each individ-
ual in the population has an equal chance of being selected (independently and identically
distributed).

i.i.d. sample

An independently and identically distributed (i.i.d.) sample, or random sample, consists of a
sequence of 𝑘-variate random vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 that have the same probability distribution
𝐹 and are mutually independent, i.e., for any 𝑖 ≠ 𝑗 and for all 𝑎𝑎𝑎,𝑏𝑏𝑏 ∈ ℝ𝑘,

𝑃(𝑋𝑋𝑋𝑖 ≤ 𝑎𝑎𝑎,𝑋𝑋𝑋𝑗 ≤ 𝑏𝑏𝑏) = 𝑃(𝑋𝑋𝑋𝑖 ≤ 𝑎𝑎𝑎)𝑃(𝑋𝑋𝑋𝑗 ≤ 𝑏𝑏𝑏).

𝐹 is called population distribution or data-generating process (DGP).

The Current Population Survey (CPS) involves random interviews with individuals from the
U.S. labor force may be regarded as an i.i.d. sample. Methods like survey sampling, admin-
istrative records, direct observation, web scraping, and field/laboratory experiments can yield
i.i.d. sampling for economic cross-sectional datasets. In a random sample there is no inherent
ordering that would introduce systematic dependencies.

Note that not all cross-sectional data comes from random sampling. For example, clustered
sampling occurs when only specific groups (e.g., classrooms) are chosen randomly (students
from the same classroom share the same environment and teacher’s performance).

20

Time series and panel data are intrinsically not independent due to the sequential nature of
the observations. We usually expect observations close in time to be strongly dependent and
observations at greater distances to be less dependent.

For time series data we assume that there exists some underlying stochastic process represented
as a doubly infinite sequence of random variables

{𝑌𝑡}𝑡∈ℤ = {… , 𝑌−1, 𝑌0, 𝑌1, … , 𝑌𝑛⏟⏟⏟⏟⏟
observed part

, 𝑌𝑛+1, …},

where the time series sample {𝑌1, … , 𝑌𝑛} is only the observed part of the process.

In order to learn from the observed part about the future (forecasting) or make inference on
the dependence with other variables, we typically assume that the distribution of the time
series sample does not depend on which time periods are observed, which excludes structural
breaks or stochastic trends.

Stationary time series

A time series process {𝑌𝑖}𝑖∈ℤ is called stationary if the mean 𝜇 and the autocovariances 𝛾(𝜏)
do not depend on the time point 𝑖. That is,

𝜇 ∶= 𝐸[𝑌𝑖] < ∞, for all 𝑖,

and
𝛾(𝜏) ∶= 𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑖−𝜏) < ∞ for all 𝑖 and 𝜏.

The quarterly nominal GDP is clearly nonstationary. It exhibits trending behavior and season-
alities. The annual nominal GDP growth rates can be regarded as a stationary time series.

Macroeconomic time series often indicate trending behavior and/or seasonalities. However,
we can often use simple transformations to convert nonstationary time series into station-
ary series, such as differences (diff(your_series, your_frequency)) or growth rates
(diff(log(your_series), your_frequency)).

The frequency is the number of observed periods per time basis. Time series (ts) objects in
R are defined in terms of a yearly time basis. Yearly time series have frequency 1, quarterly
have frequency 4, and monthly have frequency 12.

Here are some common transformations:

• First differences: Δ𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−1
• Growth rates: log(𝑌𝑖) − log(𝑌𝑖−1)

For seasonal data with frequency 4:

21

Nominal GDP Germany

Time

1990 2005 2020

40
0

60
0

80
0

Annual GDP growth Germany

Time

1995 2010 2025

−
0.

05
0.

05

• Fourth differences: Δ𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−4
• Annual growth rates: log(𝑌𝑖) − log(𝑌𝑖−4)

1.8 R-codes

methods-sec01.R

22

