
15 Time Series Inference

library(AER) # for sandwich, lmtest, and zoo
library(dynlm) # for dynamic regression
library(BVAR) # for the fred_qd data

In the previous section, we considered time series regression models tailored for forecasting,
where the regressors are based on past data relative to the dependent variable.

Of course, the regressors may also be contemporaneous as in the static time series regres-
sion

𝑌𝑡 = 𝛼 + 𝛿𝑍𝑡 + 𝑢𝑡.
The ADL model can also be extended by a contemporaneous exogenous variable:

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + … + 𝛼𝑝𝑌𝑡−𝑝 + 𝛿0𝑍𝑡 + 𝛿1𝑍𝑡−1 + … + 𝛿𝑞𝑍𝑡−𝑞 + 𝑢𝑡.

Time series regressions have the general form

𝑌𝑡 = 𝑋𝑋𝑋′
𝑡𝛽𝛽𝛽 + 𝑢𝑡, 𝑡 = 1, … , 𝑇 . (15.1)

15.1 Assumptions for time series regression

Compared to cross-sectional regression, time series regressions require a stationarity condition
instead of the i.i.d. assumption. Moreover, the error must be conditional mean independent
of all past values, which indicates that the error represents the new information (shock) that
was not available before time 𝑡. Variables that are conditional mean independent of the past
are also called martingale difference sequence.

For the dynamic linear regression Equation 15.1 we make the following assumptions:

• (A1-dyn) martingale difference sequence: 𝐸[𝑢𝑡|𝑋𝑋𝑋𝑡,𝑋𝑋𝑋𝑡−1, …] = 0.

• (A2-dyn) stationary processes: 𝑍𝑍𝑍𝑡 = (𝑌𝑡,𝑋𝑋𝑋′
𝑡)′ is a stationary time series with the

property that 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 become independent as 𝜏 gets large.

• (A3-dyn) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑡 ] < ∞, 0 < 𝐸[𝑋4

𝑡𝑙] < ∞ for all 𝑙 = 1, … , 𝑘.
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• (A4-dyn) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.

The precise mathematical statement for “becoming independent as 𝜏 gets large” is omitted
here. It can be formulated with respect to a so-called strong mixing condition. It essentially
requires that the dependency between 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 decrease as 𝜏 → ∞ with a certain rate so
that 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 are “almost independent” if 𝜏 is large enough.

Under (A1-dyn)–(A4-dyn), the OLS estimator ̂𝛽𝛽𝛽 is consistent for 𝛽𝛽𝛽 and asymptotically nor-
mal.

15.2 Time series standard errors

We have
̂𝛽𝑙 − 𝛽𝑙

𝑠𝑑( ̂𝛽𝑙|𝑋𝑋𝑋)
𝐷→ 𝒩(0, 1) as 𝑇 → ∞.

The standard deviation 𝑠𝑑( ̂𝛽𝑙|𝑋𝑋𝑋) is the squareroot of the (𝑙, 𝑙)-entry of

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

where 𝐷𝐷𝐷 = 𝑉𝑉𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋].
If the errors are uncorrelated, i.e. 𝐶𝑜𝑣(𝑢𝑡, 𝑢𝑡−𝜏) = 0 for 𝜏 ≥ 1, the matrix 𝐷𝐷𝐷 is diagonal
as in Section 5, and heteroskedasticity-consistent standard errors can be used. If the errors
exhibit autocorrelation, then 𝐷𝐷𝐷 has an arbitrary form with off diagonal entries decaying slowly
to zero as the distance to the main diagonal increases. In this case, heteroskedasticity and
autorcorrelation-consistent (HAC) standard errors must be used.

You can check potential autocorrelation in the errors by consulting the ACF plot for the
residuals:

data(gasoil, package="teachingdata2")
gas = zoo(diff(log(gasoil$gasoline)), gasoil$date)
oil = zoo(diff(log(gasoil$brent)), gasoil$date)
DL = dynlm(gas ~ L(oil, 1:2))
ADL = dynlm(gas ~ L(gas, 1:2) + L(oil, 1:2))
par(mfrow=c(1,2))
acf(DL$residuals, main="DL model")
acf(ADL$residuals, main = "ADL model")

The residuals in the DL(2) model

𝑔𝑎𝑠𝑡 = 𝛼 + 𝛿1𝑜𝑖𝑙𝑡−1 + 𝛿2𝑜𝑖𝑙𝑡−2 + 𝑢𝑡
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indicate significant autocorrelation in the first few lags. The sample autocorrelations are above
the blue dashed threshold.

The blue threshold indicates the critical value 1.96/
√

𝑇 for a test for the null hypothesis
𝐻0 ∶ 𝜌(𝜏) = 0.

We should use HAC standard errors:

coeftest(ADL, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00022028 0.00038647 0.5700 0.56877
L(gas, 1:2)1 0.37403773 0.06264798 5.9705 2.882e-09 ***
L(gas, 1:2)2 0.11072881 0.04516219 2.4518 0.01432 *
L(oil, 1:2)1 0.12355493 0.01020577 12.1064 < 2.2e-16 ***
L(oil, 1:2)2 0.00754501 0.01121716 0.6726 0.50127
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The residuals in the ADL(2,2) model

𝑔𝑎𝑠𝑡 = 𝛼0 + 𝛼1𝑔𝑎𝑠𝑡−1 + 𝛼2𝑔𝑎𝑠𝑡−2 + 𝛿1𝑜𝑖𝑙𝑡−1 + 𝛿2𝑜𝑖𝑙𝑡−2 + 𝑢𝑡

indicate no autocorrelation in the error term. We can use HC standard errors:
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coeftest(DL, vcov. = vcovHAC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00042119 0.00059160 0.7120 0.4766
L(oil, 1:2)1 0.17029082 0.01068906 15.9313 < 2.2e-16 ***
L(oil, 1:2)2 0.08437856 0.01128826 7.4749 1.239e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The following section highlights the importance of the variables being stationary in a time
series regression.

15.3 Spurious correlation

Spurious correlation occurs when two unrelated time series 𝑌𝑡 and 𝑋𝑡 have zero population cor-
relation (𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡) = 0) but exhibit a large sample correlation coefficient due to coincidental
patterns or trends within the sample data.

Here are some examples of nonsense correlations: tylervigen.com/spurious-correlations.

Nonsense correlations may occur if the underlyung time series process is nonstationary.

15.3.1 Simulation evidence

Let’s simulate two independent AR(1) processes:

𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑢𝑡, 𝑋𝑡 = 𝛼𝑋𝑡−1 + 𝑣𝑡,

for 𝑡 = 1, … , 200, where 𝑢𝑡 and 𝑣𝑡 are i.i.d. standard normal. If 𝛼 = 0.5, the processes are
stationary. If 𝛼 = 1, the processes are nonstationary (random walk).

In any case, the population covariance is zero:

𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡) = 0.

Therefore, we expect that the sample correlation is zero as well:
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set.seed(121)
## Plot two independent AR(1) processes
u = rnorm(200)
v = rnorm(200)
Y1 = stats::filter(u, 0.5, "recursive")
X1 = stats::filter(v, 0.5, "recursive")
par(mfrow = c(1,2))
plot(Y1, main = "alpha = 0.5")
lines(X1, col="blue")
Y2 = stats::filter(u, 1, "recursive")
X2 = stats::filter(v, 1, "recursive")
plot(Y2, main = "alpha = 1")
lines(X2, col="blue")
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## Squared sample correlation for alpha = 0.5:
cor(Y1,X1)^2

[1] 0.0214327

## Squared sample correlation for alpha = 1:
cor(Y2,X2)^2

[1] 0.325291
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The squared sample correlation is equal to the R-squared of a simple regression of 𝑌𝑡 on
𝑋𝑡. The R-squared for the two independent stationary time series is close to zero, and the
R-squared for the two independent nonstationary time series is unreasonably large.

The correlation of the differenced series is close to zero:

cor(diff(Y2), diff(X2))^2

[1] 0.02193921

Of course, a large sample correlation of two uncorrelated series could occur by chance. Let’s
repeat the simulation 10 times. Still, in many cases, the R-squared for the nonstationary series
is much higher than expected:

## Simulate two independent AR(1) processes and R-squared
R2 = function(alpha, n=200){
u = rnorm(n)
v = rnorm(n)
Y = stats::filter(u, alpha, "recursive")
X = stats::filter(v, alpha, "recursive")
return(cor(Y,X)^2)

}
## Get R-squared results with alpha = 0.5
c(R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200)) |> round(4)

[1] 0.0052 0.0038 0.0014 0.0081 0.0020 0.0044 0.0096 0.0187 0.0102 0.0190

## Get R-squared results with alpha = 1
c(R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200)) |> round(4)

[1] 0.0001 0.4746 0.3424 0.1782 0.4056 0.0385 0.1625 0.2406 0.3836 0.3570

Increasing the sample size to 𝑇 = 1000 gives a similar picture:

c(R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000)) |> round(4)

[1] 0.2365 0.0019 0.0215 0.4754 0.0425 0.2173 0.0030 0.4104 0.6846 0.3555
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The reason is that the OLS estimator is inconsistent if two independent random walks are
regressed on each other. The key problem is that already simple moment statistics such as the
sample mean or sample correlation are inconsistent for random walks. The behavior of the
sample mean or OLS coefficients is driven by the stochastic path of the random walk.

Two completely unrelated random walks might share common upward and downward drifts
by chance, which can produce high sample correlations although the population correlation is
zero.

15.3.2 Real-world spurious correlations

The FRED-QD database offers a comprehensive collection of quarterly U.S. macroeconomic
time series data. A subset of this data is contained in the package BVAR. See the appendix of
this paper for a detailed description of the data.

We expect no relationship between the labor force participation rate and the Canada US
exchange rate. However, the sample correlation coefficient is extremely high:

data(fred_qd, package = "BVAR")
par(mfrow=c(1,2))
plot(fred_qd$CIVPART, main="Labor force participation rate", type = "l")
plot(fred_qd$EXCAUSx, main="Canada US exchange rate", type = "l")
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cor(fred_qd$CIVPART, fred_qd$EXCAUSx)
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[1] 0.648879

plot(diff(fred_qd$CIVPART), main="Differenced CIVPART", type = "l")
plot(diff(fred_qd$EXCAUSx), main="Differenced EXCAUS", type = "l")
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cor(diff(fred_qd$CIVPART), diff(fred_qd$EXCAUSx))

[1] -0.03030723

The sample correlation of the differenced series indicates no relationship.

15.4 Testing for stationarity

The ACF plot provides a useful tool to decide whether a time series exhibits stationary or
nonstationary behavior. We can also run a hypothesis test for the hypothesis that a series is
nonstationary against the alternative that it is stationary.

15.4.1 Dickey Fuller test

Consider the AR(1) plus constant model:

𝑌𝑡 = 𝑐 + 𝜙𝑌𝑡−1 + 𝑢𝑡, (15.2)
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where 𝑢𝑡 is an i.i.d. zero mean sequence.

𝑌𝑡 is stationary if |𝜙| < 1 and nonstationary if 𝜙 = 1 (the cases 𝜙 > 1 and 𝜙 ≤ −1 lead to
exponential or oscillating behavior and are ignored here).

Let’s consider the hypotheses

𝐻0 ∶ 𝜙 = 1⏟⏟⏟⏟⏟
nonstationarity

𝑣𝑠. 𝐻1 ∶ |𝜙| < 1⏟⏟⏟⏟⏟
stationarity

To test 𝐻0, we can run a t-test for 𝜙 = 1. The t-statistic is

𝑍𝜙 =
̂𝜙 − 1

𝑠𝑒( ̂𝜙)
,

where ̂𝜙 is the OLS estimator and 𝑠𝑒( ̂𝜙) is the homoskedasticity-only standard error.

Unfortunately, under 𝐻0 the time series regression assumptions are not satisfied because 𝑌𝑡 is
a random walk. The OLS estimator is not normally distributed, but is is consistent. It can
be shown that the t-statistic does not converge to a standard normal distribution. Instead, it
converges to the Dickey-Fuller distribution:

𝑍𝜙
𝐷⟶ 𝐷𝐹
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DF distribution
Standard normal distribution

The critical values are much smaller:

0.01 0.025 0.05 0.1
𝒩(0, 1) -2.32 -1.96 -1.64 -1.28
𝐷𝐹 -3.43 -3.12 -2.86 -2.57
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More quantiles for the DF distribution can be obtained from the function qunitroot() from
the urca package.

We reject 𝐻0 if the t-statistic 𝑍𝜙 is smaller than the corresponding critical value from the
above table.

15.4.2 Augmented Dickey Fuller test

The assumption that Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝑢𝑡 in Equation 15.2 is i.i.d. is unreasonable in many
cases. It is more realistic that

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + … + 𝜙𝑝𝑌𝑡−𝑝 + 𝑢𝑡

for some lag order 𝑝. In this model, 𝑌𝑡 is nonstationary if ∑𝑝
𝑗=1 𝜙𝑗 = 1.

The equation can be rewritten as

Δ𝑌𝑡 = 𝑐 + 𝜓𝑌𝑡−1 + 𝜃1Δ𝑌𝑡−1 + … + 𝜃𝑝−1Δ𝑌𝑡−(𝑝−1) + 𝑢𝑡, (15.3)

where 𝜓 = ∑𝑝
𝑗=1 𝜙𝑗 − 1 and 𝜃𝑖 = − ∑𝑝

𝑗=𝑖+1 𝜙𝑗.

To test for nonstationarity, we formulate the null hypothesis 𝐻0 ∶ ∑𝑝
𝑗=1 𝜙𝑗 = 1, which is

equivalent to 𝐻0 ∶ 𝜓 = 0.

The t-statistic 𝑍𝜓 from Equation 15.3 converges under 𝐻0 to the DF distribution as well.
Therefore, we can reject the null hypothesis of nonstationarity, if 𝑍𝜓 is smaller than the
corresponding quantile from the DF distribution.

This test is called Augmented Dickey-Fuller test (ADF).

data(gdp, package="teachingdata")
data(gdpgr, package="teachingdata")
par(mfrow = c(2,2))
plot(gdp, main="Nominal GDP Germany")
plot(gdpgr, main = "Annual nominal GDP growth")
acf(gdp)
acf(gdpgr)

We use the ur.df() function from the urca package with the option type = "drift" to
compute the ADF test statistic.

library(urca)
ur.df(gdp, type = "drift", lags = 4)
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###############################################################
# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
###############################################################

The value of the test statistic is: 2.4235 7.8698

The ADF statistic 𝑍𝜓 is the fist value from the output. The critical value for 𝛼 = 0.05 is -2.86.
Hence, the ADF with 𝑝 = 4 does not reject the null hypothesis that GDP is nonstationary.

ur.df(gdpgr, type = "drift", lags = 4)

###############################################################
# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
###############################################################

The value of the test statistic is: -4.1546 8.6402

The ADF statistic with 𝑝 = 4 is below -2.86, and the ADF test rejects the null hypothesis that
GDP growth is nonstationary at the 5% significance level.

These results are in line with the observations from the ACF plots.
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15.5 R-codes

methods-sec15.R
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