14 Forecasting Models

14.1 Basic time series models

Consider two time series Y, and Z, for t = 1,...,T. The index t is used instead of ¢ because
observations correspond to time points, not individuals. T represents the sample size, i.e., the
number of observed time periods.

Here are some core linear time series forecasting models:
1) Autoregressive model, AR(p):
Yi=ag+a,Yy g +opYy o+ +aY, ) +uy
2) Distributed lag model, DL(g):
Yi=a+62Z, 1+ .. +06,Z; 4+
3) Autoregressive distributed lag model, ADL(p,q):
Y=o+ Y+t ,+072 +. + 0,7+

In these equations, p is the number of lags of the dependent variable Y,, ¢ is the number of
lags of the explanatory variable Z,, and u, is a mean zero error (shock) that is conditional
mean independent of the regressors. These models can be estimated by OLS.

The AR, DL, and ADL models can be used for forecasting because the regressors lie in the
past relative to the dependent variable. Further exogenous variables can also be included.

If the model parameters are known and the sample is given for t = 1,...,7T, we can compute
the out-of-sample predicted value for ¢ = T" + 1, which defines a population forecast for Y ;
(1-step ahead forecast). E.g. in the ADL model, we have

Using estimated coefficients, we have the 1-step ahead forecast

Because regression models with time series variables typically include lags of variables, we call
them dynamic regression models.
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14.2 Dynamic regressions

In general, let Y, be the univariate dependent time series variable, and X, = (X, ..., X},;)’
be the k-variate regressor time series vector. A time series regression is a linear regression

model
Y,=X+u, t=1,..,T, (14.1)

where the error term satisfies Efu,|X,] = 0.

The vector of regressors X, may contain multiple exogenous variables and its lags, but also
lags of the dependent variable. E.g., in the ADL(p,q) model, we have k = p + g + 1 and
Xt = (17 }/;71, cen 7}/;7])7 Zt717 cee 7Zt7q>/7
ﬂ — (OéO,Oél, e 7O£p, 51, ceey 6q)/.

The OLS estimator is

B= (ixgc;)l (ixtyt).

To compute X in B for dynamic models, we need a few additional observations at the beginning
of the sample. Le., for the ADL(p,q) model, Y, must be observed from t =1—p,...,T and Z,
fromt=1—gq,...,T.

14.3 One-step ahead forecast

In forecasting models, the regressors contain only variables that lie in the past of ¢t. Therefore,
X7, is known from the sample, and the one-step ahead forecast can be computed as

YT+1\T - Xéfﬂﬂ
The forecast error is
fT+1|T =Yr— YT+1\T
= X7 B+up — X8
=upy + X7, (B—B)
N Uy
The last step holds for large T' if the OLS estimator ,B is consistent.

To obtain a (1 — a)-forecast interval Iipq 7,1_q) With

lim P(YT+1 e I(TH‘T;I_Q)) =1-a, (14.2)

T—o0
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we require a distributional assumption for the error term. Unfortunately, the central limit
theorem will not help us here. The most common assumption is to assume normally distributed
errors u, ~ N(0,0?), but also a t-distribution is possible if there is evidence that the errors
have a higher kurtosis.

If the errors are normally distributed and the OLS estimator is consistent, it follows that

lim P(fTHT < C) = ®(c),

where @ is the standard normal CDF. Consequently, Equation 14.2 holds with

lriri—a) = IYT+1|T —A1-9)%w Yrr + 2(1-2)%a|>

where s; is the standard error of regression (SER).

14.4 Dynamic models in R

14.4.1 An AR model for GDP

library(dynlm) # for dynamic linear models
data(gdpgr, package = "teachingdata")
plot(gdpgr, main = "Nominal monthly GDP growth Germany")

Nominal monthly GDP growth Germany

0.05
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gdpgr

-0.05

I I I I I I
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Consider the AR(4) model for GDP growth:

gdp, = g + ayg9dp, 1 + apgdp,_o + azgdp,_3 + augdpy_4 + uy.

One challenge is to define the lagged regressors correctly. Because we have four lags, we need
T + 4 observations from ¢t = —3, ..., T to compute the OLS estimate. The embed() function is
useful to get the regressor matrix with the shifted variables with lags from 1 to 4:

embed (gdpgr ,5)

[1,]

[2,]

[3,]

(4,]

[5,]

[6,]

[7,]

[8,]

[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]

O O O O O O O OO OO OO OO OO OO0 O0OO0OO0OOOOOO O OO

[,1]

.0201337715
.0355929601
.0305325110
.0267275508
.05045632397
.0372759162
.0427747084
.0453798176
.0385844643
.0404915385
.0353187251
.0260446862
.0125448113
.0116162653
.0172743837
.0145381167
.0064074433
.0286181410
.0240593231
.0222180983
.0458560754
.0162997134
.0240238678
.0219259244
.0175312705
.0213872237
.0215996987
.0275603181
.0379630756
.0295828692
.0213309511

O O O O O O O OO OO OO OO OO OO OO0 OOOOO O OO

[,2]

.0586045514
.0201337715
.0355929601
.0305325110
.0267275508
.05045632397
.0372759162
.0427747084
.0453798176
.0385844643
.0404915385
.0353187251
.0260446862
.0125448113
.0116162653
.0172743837
.0145381167
.0064074433
.0286181410
.0240593231
.0222180983
.0458560754
.0162997134
.0240238678
.0219259244
.0175312705
.0213872237
.0215996987
.0275603181
.0379630756
.0295828692

O O O O O O O OO OO OO OO OO OO0 OO0 OOOOO O OO

[,3]

.0732642826
.0586045514
.0201337715
.03556929601
.03056325110
.0267275508
.05045632397
.0372759162
.0427747084
.0453798176
.0385844643
.0404915385
.0353187251
.0260446862
.0125448113
.0116162653
.0172743837
.0145381167
.0064074433
.0286181410
.0240593231
.0222180983
.0458560754
.0162997134
.0240238678
.0219259244
.0175312705
.0213872237
.0215996987
.0275603181
.0379630756
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[,4]

.0651053628
.0732642826
.0586045514
.0201337715
.03556929601
.03056325110
.0267275508
.0504532397
.0372759162
.0427747084
.0453798176
.0385844643
.0404915385
.03563187251
.0260446862
.0125448113
.0116162653
.0172743837
.0145381167
.0064074433
.0286181410
.0240593231
.0222180983
.0458560754
.0162997134
.0240238678
.0219259244
.0175312705
.0213872237
.0215996987
.0275603181

O O O O O O OO O OO OO OO0 O0OO0OO0OO0OO0OO0OO0OOOOOOoOOoOOoOoo

[,5]

.0874092348
.0651053628
.0732642826
.05686045514
.0201337715
.0355929601
.03056325110
.0267275508
.0504532397
.0372759162
.0427747084
.0453798176
.0385844643
.0404915385
.03563187251
.0260446862
.0125448113
.0116162653
.0172743837
.0145381167
.0064074433
.0286181410
.0240593231
.0222180983
.0458560754
.0162997134
.0240238678
.0219259244
.0175312705
.0213872237
.0215996987



[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
[47,]
[48,]
[49,]
[50,]
[51,]
[52,]
[53,]
[54,]
[55,]
[56,]
[57,]
[58,]
[59,]
[60,]
[61,]
[62,]
[63,]
[64,]
[65,]
[66,]
[67,]
[68,]
[69,]
[70,]
[71,]
[72,1]
[73,]
[74,]

O O O O O O OO OO OO OO O OO0 O0OO0ODOOOOOOOOOOOoOOo

.0075237667
.0299392612
.0246649062
.0280194737
.0356734942
.0014322600
.0138416969
.0235678950
.0077007205
.0083826875
.0032922145
.0047364761
.0079743278
.0270819565
.0337685936
.0136382992
.0172059191
.0006541173
.0139693816
.0134547959
.0167457829
.0430703460
.0312473976
.0382467143
.0526367957
.0561884737
.0466371217
.0474469210
.0378900574
.0295752497
.0379954321
.0178515785
.0099977546
.0528038611
.0655685839
.0361084433
.0083350789
.0372744742
.0492404647
.0514080371
.0510942532
.0665344115
.0511323253

O O O O O OO OO OO OO OO OO0 O0ODO0ODO0ODODOOOOOOOOOOCOoOOo

.0213309511
.0075237667
.0299392612
.0246649062
.0280194737
.0356734942
.0014322600
.0138416969
.0235678950
.0077007205
.0083826875
.0032922145
.0047364761
.0079743278
.0270819565
.0337685936
.0136382992
.0172059191
.0006541173
.0139693816
.0134547959
.0167457829
.0430703460
.0312473976
.0382467143
.0526367957
.0561884737
.0466371217
.0474469210
.0378900574
.0295752497
.0379954321
.0178515785
.0099977546
.0528038611
.0655685839
.0361084433
.0083350789
.0372744742
.0492404647
.0514080371
.0510942532
.0665344115

O O OO O O OO OO OO OO OO0 OO O0ODODODODODOOOOOOOOCOoOoOo

.0295828692
.0213309511
.0075237667
.0299392612
.0246649062
.0280194737
.0356734942
.0014322600
.0138416969
.0235678950
.0077007205
.0083826875
.0032922145
.0047364761
.0079743278
.0270819565
.0337685936
.0136382992
.0172059191
.0006541173
.0139693816
.0134547959
.0167457829
.0430703460
.0312473976
.0382467143
.0526367957
.0561884737
.0466371217
.0474469210
.0378900574
.0295752497
.0379954321
.0178515785
.0099977546
.0528038611
.0655685839
.0361084433
.0083350789
.0372744742
.0492404647
.0514080371
.0510942532
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O O O O O O O OO OO OO ODO OO OODODO0ODO0ODODODODODOOOOOOOCO oo

.0379630756
.0295828692
.0213309511
.0075237667
.0299392612
.0246649062
.0280194737
.0356734942
.0014322600
.0138416969
.0235678950
.0077007205
.0083826875
.0032922145
.0047364761
.0079743278
.0270819565
.0337685936
.0136382992
.0172059191
.0006541173
.0139693816
.0134547959
.0167457829
.0430703460
.0312473976
.0382467143
.0526367957
.0561884737
.0466371217
.0474469210
.0378900574
.0295752497
.0379954321
.0178515785
.0099977546
.0528038611
.0655685839
.0361084433
.0083350789
.0372744742
.0492404647
.0514080371

O O O O O O OO OO O OO OO0 OO OOO0OO0OO0OO0OO0OOO0OOOOOOOOoOOoOOoo

.0275603181
.0379630756
.02956828692
.0213309511
.0075237667
.0299392612
.0246649062
.0280194737
.0356734942
.0014322600
.0138416969
.0235678950
.0077007205
.0083826875
.0032922145
.0047364761
.0079743278
.0270819565
.0337685936
.0136382992
.0172059191
.0006541173
.0139693816
.0134547959
.0167457829
.0430703460
.0312473976
.0382467143
.05626367957
.0561884737
.0466371217
.0474469210
.0378900574
.0295752497
.0379954321
.0178515785
.0099977546
.0528038611
.0655685839
.0361084433
.0083350789
.0372744742
.0492404647



[75,]
[76,]
[77,]
[78,]
[79,]
[80,]
[81,]
[82,]
[83,]
[84,]
[85,]
[86,]
[87,]
[88,]
[89,]
[90,]
[91,]
[92,]
[93,]
[94,]
[95,]
[96,]
[97,1]
[98,]
[99,]
[100,]
[101,]
[102,]
[103,]
[104,]
[105,]
[106,]
[107,]
[108,]
[109,]
[110,]
[111,]
[112,]
[113,]
[114,]
[115,]
[116,]
[117,]

o

o

o

O O O O O O O OO OO OO OO OO O OO O0ODO0ODODODOODOOOOOOOCOoOOo

O O O O O

.0463615981
.0336752941
.0291605087
.0175460213
.0154886280
.0142225002
.0056581603
.0305069664
.0308774823
.0276026912
.0490999652
.0346488227
.0358017884
.0424204059
.0282154475
.0337444820
.0331285814
.0373844847
.0343197078
.0487914477
.0299897045
.0282785948
.0459681771
.0279843861
.0433567397
.0479289263
.0304271605
.0395955660
.0219910435
.0268311490
.0330945264
.0228782682
.0418425360
.0292072118
.0152491384
.0811063878
.0171806194
.0023126329
.0003123391
.1149645541
.0668135553
.0631410541
.0871829292

o

o

(@]

O O O O O O O OO OO OO OO OO OO ODODODOODOOOOOOOOoOOVLOOO

O O O O

.0511323253
.0463615981
.0336752941
.0291605087
.0175460213
.0154886280
.0142225002
.0056581603
.0305069664
.0308774823
.0276026912
.0490999652
.0346488227
.0358017884
.0424204059
.0282154475
.0337444820
.0331285814
.0373844847
.0343197078
.0487914477
.0299897045
.0282785948
.0459681771
.0279843861
.0433567397
.0479289263
.0304271605
.0395955660
.0219910435
.0268311490
.0330945264
.0228782682
.0418425360
.0292072118
.0152491384
.0811063878
.0171806194
.0023126329
.0003123391
.1149645541
.0668135553
.0631410541

o

o

o

O O O O O OO OO OO OO ODOODODODODODODO0ODO0ODODODODODOOOOOOOOCOoOoOo

O O O

.0665344115
.0511323253
.0463615981
.0336752941
.0291605087
.0175460213
.0154886280
.0142225002
.0056581603
.0305069664
.0308774823
.0276026912
.0490999652
.0346488227
.0358017884
.0424204059
.0282154475
.0337444820
.0331285814
.0373844847
.0343197078
.0487914477
.0299897045
.0282785948
.0459681771
.0279843861
.0433567397
.0479289263
.0304271605
.0395955660
.0219910435
.0268311490
.0330945264
.0228782682
.0418425360
.0292072118
.0152491384
.0811063878
.0171806194
.0023126329
.0003123391
.1149645541
.0668135553
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O O O O O O O OO OO OO OO OO OO ODODODODODODODOOOOOOOOOLOLO OO

.0510942532
.0665344115
.0511323253
.0463615981
.0336752941
.0291605087
.0175460213
.0154886280
.0142225002
.0056581603
.0305069664
.0308774823
.0276026912
.0490999652
.0346488227
.0358017884
.0424204059
.0282154475
.0337444820
.0331285814
.0373844847
.0343197078
.0487914477
.0299897045
.0282785948
.0459681771
.0279843861
.0433567397
.0479289263
.0304271605
.0395955660
.0219910435
.0268311490
.0330945264
.0228782682
.0418425360
.0292072118
.0152491384
.0811063878
.0171806194
.0023126329
.0003123391
.1149645541

O O O O O O O OO OO O OO OO OOO0OOOO0OOOO0OO0OOO0OO0OO0OOOO0OOOOoOOoOOoOOo

.0514080371
.0510942532
.0665344115
.0511323253
.0463615981
.0336752941
.0291605087
.0175460213
.0154886280
.0142225002
.0056581603
.0305069664
.0308774823
.0276026912
.0490999652
.0346488227
.0358017884
.0424204059
.0282154475
.0337444820
.0331285814
.0373844847
.0343197078
.0487914477
.0299897045
.0282785948
.0459681771
.0279843861
.0433567397
.0479289263
.0304271605
.0395955660
.0219910435
.0268311490
.0330945264
.0228782682
.0418425360
.0292072118
.0152491384
.0811063878
.0171806194
.0023126329
.0003123391



[118,] 0.0743265551 0.0871829292 0.0631410541 0.0668135553 0.1149645541
[119,1 0.0564924452 0.0743265551 0.0871829292 0.0631410541 0.0668135553
[120,1 0.0602844287 0.0564924452 0.0743265551 0.0871829292 0.0631410541
[121,]1 0.0695948062 0.0602844287 0.0564924452 0.0743265551 0.0871829292
[122,1 0.0590362127 0.0695948062 0.0602844287 0.0564924452 0.0743265551
[123,] 0.0578294655 0.0590362127 0.0695948062 0.0602844287 0.0564924452
[124,1 0.0583002102 0.0578294655 0.0590362127 0.0695948062 0.0602844287
Y = embed(gdpgr,5) [,1]
X = embed(gdpgr,5)[,-1]
Im(Y~X)
Call:
Im(formula = Y ~ X)
Coefficients:
(Intercept) X1 X2 X3 X4

0.01377 0.61058 0.12867 0.15959 -0.37862

An alternative is the dynlm() function from the dynlm package (dynamic linear model). It
has the option to use the lag operator L

fitAR = dynlm(gdpgr ~ L(gdpgr) + L(gdpgr,2) + L(gdpgr,3) + L(gdpgr,4))
fitAR

Time series regression with "ts" data:

Start = 1993(1), End = 2023(4)
Call:
dynlm(formula = gdpgr ~ L(gdpgr) + L(gdpgr, 2) + L(gdpgr, 3) +

L(gdpgr, 4))

Coefficients:
(Intercept) L(gdpgr) L(gdpgr, 2) L(gdpgr, 3) L(gdpgr, 4)
0.01377 0.61058 0.12867 0.15959 -0.37862

You can also use dynlm(gdpgr ~ L(gdpgr,1:4)). The built-in function ar.ols() can be
used as well, but it must be configured correctly:
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ar.ols(gdpgr, aic=FALSE, order.max = 4, demean = FALSE, intercept = TRUE)

Let’s predict the next value for the GDP growth, gdpr,,. We use the regressors X . ; =
(1, gdpp, gdpy ., gdpp_o, gdpp _3)'":

9de+1|T =X74B

## Define X _{T+1}

latestX = c(1, tail(gdpgr, 4))

## compute one-step ahead forecast
coef (fitAR) %x% latestX

[,1]
[1,] 0.05101086

The above value is only a point forecast. Let’s also compute 90% and 99% forecast intervals.

## One-step ahead point forecast

Yhat = coef (fitAR) 7xJ latestX

## standard error of regression

SER = summary(fitAR)$sigma

## Plot gdp growth

plot(gdpgr, main = "Forecast intervals for GDP growth")
## Plot point forecast

points (2024, Yhat, col="red", lwd = 3)

## Plot 90) forecast interval

points (2024, Yhat+SER*xqnorm(0.95), col="blue", lwd=2)
points (2024, Yhat-SER*qnorm(0.95), col="blue", lwd=2)
## Plot 99J forecast interval

points (2024, Yhat+SER*qnorm(0.995), col="blue", lwd=1)
points (2024, Yhat-SER*qnorm(0.995), col="blue", lwd=1)

The forecast intervals are quite large, which is not too surprising given the simplicity of the
model.

14.4.2 An ADL model for gasoline prices

If X, is a weekly price, then the return (the continuous growth rate) is log(X,) — log(X,_;),
which is computed in R as diff (log(X)).
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Forecast intervals for GDP growth
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We consider an ADL(4,4) model regressing the weekly gasoline price returns on oil price
returns:

gas, = o + @1 9as;_1 + ®p9as;_o + 03gas,_3 + 04 gas, 4
+ 6y0il,_; + +050il,_o + d50il,_5 + d,40il,_, + u,

We can use the zoo class to assign time points to observations. The base R ts (time series)
class can only handle time series with a fixed and regular number of observations per year such
as yearly, quarterly, or monthly data. Weekly data do not have exactly the same number of
observations per year, which is why we use the more flexible zoo class. zoo is part of the AER
package. zoo(mytimeseries, mydates) defines a zooobject

data(gasoil, package="teachingdata2")
GASOLINE = zoo(gasoil$gasoline, gasoil$date)
BRENT = zoo(gasoil$brent, gasoil$date)

gas = diff(log(GASOLINE))

0il = diff(log(BRENT))

par (mfrow = c(2,2))

plot (GASOLINE, main="Gasoline prices")

plot (BRENT, main="0il prices")

plot(gas, main="Gasoline returns")

plot(oil, main="0il returns")
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fitADL = dynlm(gas ~ L(gas, 1:4) + L(oil, 1:4))
fitADL

Time series regression with "zoo" data:
Start = 1991-02-25, End = 2023-04-03

Call:
dynlm(formula = gas ~ L(gas, 1:4) + L(oil, 1:4))

Coefficients:
(Intercept) L(gas, 1:4)1 L(gas, 1:4)2 L(gas, 1:4)3 L(gas, 1:4)4
0.0002527 0.3633626 0.0582818 0.0527356 -0.0143211
L(oil, 1:4)1 L(oil, 1:4)2 L(oil, 1:4)3 L(oil, 1:4)4
0.1241477 0.0144996 0.0153132 0.0137106

latestX = c(1, tail(gas,4), tail(oil,4))
## one-step ahead forecast
latestX %*J% coef (fitADL)

[,1]
[1,] -0.002331957
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14.5 ldentification

Consider again the time series regression model of Equation 14.1. Under the regularity condi-
tion that the design matrix E[X,X}] is invertible (no multicollinearity), the coefficient vector

B can be written as
B = (E[X.X}])"'E[X,Y}]. (14.3)

In order for 8 in Equation 14.3 to make sense, it must have same value for all time points ¢.
That is, F[X,X;] and E[X,Y,] must be time invariant. To ensure this, we assume that the
k+ 1 vector Z, = (Y;,X})’ is stationary.

Recall the definition of stationarity for a multivariate time series:
Stationary univariate time series
A time series Y, is called stationary if the mean p and the autocovariance function ~(7)
do not depend on the time point ¢. That is,
W= E[Y,] < oo, forallt,

and
¥(1) := Couv(Y,,Y,_,) < oo forall t and 7.

The autocorrelation of order 7 is

= oY) ()

Valv] A0 <%

The autocorrelations of stationary time series typically decay to zero quite quickly as 7 in-
creases, i.e., p(7) — 0 as 7 — oo. Observations close in time may be highly correlated, but
observations farther apart have little dependence.

We define the stationarity concept for multivariate time series analogously:
Stationary multivariate time series

A g-variate time series Z, = (Zy4,...,Z,)" is called stationary if each entry Z;, of Z, is a

stationary time series, and, in addition, the cross autocovariances do not depend on ¢:

Cov(Z;5,Z; ) = Cov(Z;, Z;

187 “j,8—T ],t—T) <0
forall 7 € Z and for all s,t=1,...,T,and 7,5 =1, ..., q.

The mean vector of Z, is
4

p=(E[Zy], . ElZy))
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and the autocovariance matrices for = > 0 are

I(r)=E[(Z, —pn)(Z, . —p)]
COU<Z1,1‘,7 Zl,t—T) Cov(Zl,tv Zq,t—ﬂ')

CO’U(Zq,taZLth) COU(Zq,UZq,th)

A time series Y, is nonstationary if the mean E[Y;] or the autocovariances Cov(Y,,Y, )
change with t, i.e., if there exist time points s # ¢ with

E[Y) # ElY)] or Cou(Y,.Y, )+ Cou(Y, Y, ,)

for some 7.

14.6 AR(1) process

To learn when a time series is stationary and when it is not, it is helpful to study the autore-
gressive process of order one, AR(1). It is defined as

Y, = 6%, +uy, (14.4)
where v, is an i.i.d. sequence of increments with E[u,] = 0 and Var|u,] = o2.

If || < 1, the AR(1) process is stationary with

_ dou

=14

Its autocorrelations p(7) = ¢ decay exponentially in the lag order .

p="0, ~(r) p(t)=¢7, T2=0.

Let’s simulate a stationary AR(1) process. The function filter(u, phi, "recursive")
computes Equation 14.4 for parameter phi, a given sequence u and starting value u, = 0.

## simulate AR1 with parameter phi=0.8,

## standard normal inmnovations, and T=400:
set.seed(123)

u = rnorm(400)

AR1 = stats::filter(u, 0.8, "recursive")
par (mfrow = c(1,2))

plot (AR1, main="Simulated AR(1) process")
acf (AR1)
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Simulated AR(1) process Series AR1
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On the right hand side you find the values for the sample autocorrelation function (ACF),

which is defined as T

Zt:‘r-H (Y; - ?> (Y;ﬁfr - ?)
SLY,-Y)2

The sample autocorrelations of the AR(1) process with parameter ¢ = 0.8 converge exponen-
tially to 0 as 7 — oo.

p(r) =

The simple random walk is an example of a nonstationary time series process. It is an
AR(1) process with ¢ = 1 and starting value Y, =0, i.e.,

Y:t:}/;tfl"i_ut? t>1

By backward substitution, it can be expressed as the cumulative sum

It is nonstationary since Cov(Y,,Y,_.) = (t — )02, which depends on ¢ and becomes larger as
t gets larger.

## simulate AR1 with parameter phi=1 (random walk) :
RW = stats::filter(u, 1, "recursive")

par (mfrow = c(1,2))

plot (RW, main= "Simulated random walk")

acf (RW)

The ACF plots indicate the dynamic structure of the time series and whether they can be
regarded as a stationary time series. The ACF of AR1 tends to zero quickly. It can be treated
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Simulated random walk Series RW
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as stationary time series. The ACF of RW tends to zero very slowly, indicating a high persistence.
This time series is non-stationary.

14.7 Autocorrelations of GDP

data(gdp, package="teachingdata")

par (mfrow = c(2,2))

plot(gdp, main="Nominal GDP Germany")
plot(gdpgr, main = "Annual nominal GDP growth")
acf (gdp)

acf (gdpgr)

The ACF plots indicate that nominal GDP is nonstationary, while GDP growth is stationary.
The asymptotic normality result for OLS is not valid if nonstationary time series are used.

14.8 R-codes

methods-secl14.R
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