
13 Case Study III: Big Data

library(readxl) # for reading Excel files
library(tidyverse) # for data manipulation and visualization
library(caret) # for cross-validation
library(glmnet) # for ridge and lasso regression

13.1 Introduction

In this case study, we will explore the empirical application of prediction methods using the test
score data set from California elementary schools. The data set includes detailed information
on various school and community characteristics, which allows us to experiment with different
regression models and prediction techniques.

We aim to predict fifth-grade test scores using three different sets of predictors: a small set with
only a few variables, a large set with many variables, and a very large set with an extensive
number of predictors, including interactions, squares, and cubes of the main variables.

13.2 Data Set Description

The primary data set contains data on 3932 elementary schools in California from 2013. The
raw data and its variable descriptions can be downloaded here (CA_Schools_EE14).

Data has been splitted into three sets based on the number of predictors:

1. Small Data Set: Contains 4 variables that have been commonly used in previous
studies:

• Student-teacher ratio (str_s)

• Median income of the local population (med_income_z)

• Teachers average years of experience (te_avgyr_s)

• Instructional expenditures per student (exp_1000_1999_d)

162

2. Large Data Set: Contains 817 predictors including 38 main variables, their squares,
cubes, and all possible pairwise interactions. The main variables cover student demo-
graphics, teacher characteristics, school funding, and expenditure metrics, including frac-
tions of students by eligibility and ethnicity, teacher experience, school expenditures, and
district-level financial data.

3. Very Large Data Set: Contains 2065 predictors, which includes additional demo-
graphic variables, their squares, cubes, and interactions with the binary variables de-
scribing school characteristics.

For simplicity, these data sets have been prepared for you and can be accessed directly from
the xlsx files (see Ilias course):

data_large = read_xlsx("data_large.xlsx")

We will use the large data set here, but you can apply the same code to the small and the very
large data set.

data_small = read_xlsx("data_small.xlsx")
data_verylarge = read_xlsx("data_verylarge.xlsx")

Here you find a script to create your own data sets based on the raw data.

13.3 Methods

We will use four different methods to estimate the predictive models:

1. Ordinary Least Squares (OLS)

2. Ridge Regression

3. Lasso Regression

4. Principal Components Regression (PCR)

These methods will be applied to each of the data sets to evaluate their performance in
predicting out-of-sample test scores. The main metric used to assess the prediction accuracy
is the Root Mean Squared Error (RMSE).

163

13.4 Data Preparation

The data is processed and divided into training and test sets (50/50 split), with 1966 observa-
tions each. The predictor variables are standardized, and the response variable is the average
fifth-grade test score at the school.

Select the data set to be used (large dataset in this case)
mydata = data_large

Split 50/50 into training and test sets
set.seed(123) #for reproducibility
train_indices = sample(1:nrow(mydata), size = 0.5*nrow(mydata))
train_data = mydata[train_indices,]
test_data = mydata[-train_indices,]

Standardize/scale the predictor variables
train_response = train_data$testscore
train_predictors = train_data |> select(-testscore) |> scale()
test_response = test_data$testscore
test_predictors = test_data |> select(-testscore) |> scale()

13.5 Cross-Validation for Tuning Parameters

13.5.1 Ridge Regression

For ridge regression, we perform 10-fold cross-validation to select the optimal shrinkage pa-
rameter (𝜆). The tuning parameter that minimizes the cross-validated RMSE is chosen for
the final model.

The train() function from the caret package can be used for cross validation. We set alpha
to 0 for ridge regression and we try out different lambdas specified in the sequence given by
lambdagrid.

grid for lambdas over which to cross validate. the finer the grid, the longer it takes
lambdagrid = exp(seq(0,7,length=100))

cv.ridge = train(
x=train_predictors,
y=train_response,
method = "glmnet",
metric = "RMSE",

164

tuneGrid = expand.grid(alpha = 0,lambda = lambdagrid),
trControl = trainControl(method = "cv", number = 10) # 10-fold cv

)
plot(cv.ridge) # plot the cv results for ridge

Cross-Validation Results for Ridge Regression

print best tuning parameters for ridge
cv.ridge$bestTune

[1] 42.41384

We can also fine-tune lambda in a specific region to get a better picture, e.g. around 30-50:

cv.ridge.finetune = train(
x=train_predictors,
y=train_response,
method = "glmnet",
metric = "RMSE",
tuneGrid = expand.grid(alpha = 0,lambda = seq(30,50, length = 101)),
trControl = trainControl(method = "cv", number = 10)

)
plot(cv.ridge.finetune)

165

the result may be slightly different each time because the folds are sampled randomly
cv.ridge.finetune$bestTune

[1] 34.8

The built-in cross-validation method of the glmnet package gives a similar tuning parameter:

cv.ridge2 = cv.glmnet(x=train_predictors, y=train_response, alpha=0)
cv.ridge2$lambda.min

[1] 39.27491

13.5.2 Lasso Regression

Similar to ridge regression, we use 10-fold cross-validation to find the optimal shrinkage pa-
rameter for the lasso model.

The procedure is the same, but now we set alpha = 1 for lasso.

166

lambdagrid = seq(0, 2, length = 101)

cv.lasso = train(
x = train_predictors,
y = train_response,
method = "glmnet",
metric = "RMSE",
tuneGrid = expand.grid(alpha = 1, lambda = lambdagrid),
trControl = trainControl(method = "cv", number = 10) # 10-fold cv

)
plot(cv.lasso)

Cross-Validation Results for Lasso Regression

print best tuning parameters for lasso
cv.lasso$bestTune

[1] 0.56

Again, we can alternatively use the glmnet package with its built-in cross-validation method:

cv.lasso2 = cv.glmnet(x=train_predictors, y=train_response, alpha=1)
cv.lasso2$lambda.min

[1] 0.4841995

167

13.5.3 Principal Components Regression

For principal component regression (PCR), we use principal components analysis to determine
the number of components that explain a significant amount of variance in the predictors. We
then use 10-fold cross-validation to select the number of principal components that balances
bias and variance for the regression model.

Principal Component Analysis
pca_result = prcomp(train_predictors)
X_pca = pca_result$x # Full matrix of all principal component scores

We then use a subset of the principal components as predictors in a regression model. Here,
we start by using the first four principal components.

Run a PC-regression with ncomp=4 principal components
ncomp = 4
data_pca = data.frame(y = train_response, X_pca[, 1:ncomp])
lm(y~., data = data_pca)

Call:
lm(formula = y ~ ., data = data_pca)

Coefficients:
(Intercept) PC1 PC2 PC3 PC4

752.792 -2.480 -2.183 2.294 1.436

By regressing on the first few principal components, we reduce the dimensionality of the
problem. This can help prevent overfitting, as the components capture the most important
information from the original predictors while ignoring the noise.

To decide how many principal components to use, we can plot the scree plot, which shows the
fraction of total variance explained by each principal component.

Scree Plot: Fraction of variance explained
var_explained = pca_result$sdev^2 / sum(pca_result$sdev^2)
plot(var_explained[1:70], type="b",

xlab = "Principal Component", ylab = "Fraction of Variance Explained")

Scree Plot: Fraction of variance explained

The scree plot indicates an elbow around 30-40 components. We can also determine the number
of principal components needed to explain a specific percentage of the total variance.

168

0 10 20 30 40 50 60 70

0.
00

0.
05

0.
10

0.
15

Principal Component

F
ra

ct
io

n
of

 V
ar

ia
nc

e
E

xp
la

in
ed

number of components needed to explain 90% of variance
which(cumsum(var_explained) > 0.90)[1]

[1] 34

number of components needed to explain 95% of variance
which(cumsum(var_explained) > 0.95)[1]

[1] 62

number of components needed to explain 99% of variance
which(cumsum(var_explained) > 0.99)[1]

[1] 157

Retaining components that explain 90%-95% of the variance is a common practice to ensure
that most of the underlying structure of the data is preserved while omitting unnecessary
noise.

169

Finally, we use cross-validation to find the optimal number of principal components that
minimizes the mean squared prediction error.

PCR 10-fold cross-validation
myfunc.cvpca = function(p){
data_pca = data.frame(y = train_response, X_pca[,1:p])
cv = train(

y ~ ., data = data_pca,
method = "lm",
metric = "RMSE",
trControl = trainControl(method = "cv", number = 10)

)
return(cv$results$RMSE)

}
Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 150 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function arguments ncomp

Find the number of components with the lowest RMSPE
which.min(cv.pca)
plot(cv.pca, type="l")

[1] 48

Cross-Validation Results for Principal Components Regression

170

13.6 Summary

We can now summarize the tuning parameters that were determined through cross-validation
for each predictive method and each data set.

Estimated 𝜆 or 𝑝:

Data Set Ridge Lasso PCR
Small (k = 4) 3.33 0.4 4
Large (k = 817) 42.41 0.56 48
Very Large (k = 2065) 437.38 0.58 73

The parameters are selected by minimizing the MSPE through 10-fold cross-validation using
the 1966 observations in the training sample.

We reserved a separate test sample of 1966 observations, independent of the training sample.
To evaluate the predictive performance, we use the estimated models from the training sample
to predict 𝑌𝑖 from 𝑋𝑖𝑋𝑖𝑋𝑖 for all 𝑖 in the test sample and then assess the mean prediction errors.
As a baseline competitor, we include the OLS predictor.

OLS
fit.ols = lm(testscore ~., data = train_data)
oospred.ols = predict(fit.ols, newdata = test_data)

Ridge
lambda.ridge = 42.41
fit.ridge = glmnet(x=train_predictors, y=train_response, alpha=0, lambda = lambda.ridge)
oospred.ridge = predict(fit.ridge, test_predictors)

LASSO
lambda.lasso = 0.56
fit.lasso = glmnet(x=train_predictors, y=train_response, alpha=1, lambda = lambda.lasso)
oospred.lasso = predict(fit.lasso, test_predictors)

PCA
p.pcr = 48
pca_result = prcomp(train_predictors)
data_pca = data.frame(y=train_response, pca_result$x[,1:p.pcr])

171

fit.pcr = lm(y~., data = data_pca)
Estimated principal component weights
w = pca_result$rotation
Principal components for the training data (coincides with pca_result$x):
P.train = train_predictors %*% w
Principal components for the test data:
P.test = test_predictors %*% w
datapca.test = data.frame(y=test_response, P.test[,1:p.pcr])
out of sample prediction
oospred.pca = predict(fit.pcr, newdata = datapca.test)

Out-of-sample RMSPE computation
OLS
sqrt(mean((test_response - oospred.ols)^2))

[1] 61.8867

Ridge
sqrt(mean((test_response - oospred.ridge)^2))

[1] 39.10138

Lasso
sqrt(mean((test_response - oospred.lasso)^2))

[1] 39.33968

PCA
sqrt(mean((test_response - oospred.pca)^2))

[1] 39.82125

We can now present all out-of-sample MSPEs for all data sets in a summary table. We select
the tuning parameters 𝜆 and 𝑝 from the table above.

Data Set OLS Ridge Lasso PCR
Small 52.44 52.47 52.45 52.48

172

Data Set OLS Ridge Lasso PCR
Large 61.89 39.1 39.34 39.82
Very Large - 39.39 39.42 39.95

OLS is infeasible in the very large dataset because 𝑘 > 𝑛. Ridge, lasso, and PCR perform
similarly well, in particular in the large and the very large data set.

13.7 R-codes

methods-sec13.R

173

Part V

E) Time Series Methods

174

