
11 Shrinkage Estimation

Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

11.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator ̂𝜃 for a parameter 𝜃 is

𝑚𝑠𝑒( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2].

The MSE can be decomposed into the variance plus squared bias:

𝑚𝑠𝑒( ̂𝜃) = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+ (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝑏𝑖𝑎𝑠( ̂𝜃)2

Proof. Subtracting and adding 𝐸[ ̂𝜃] gives

( ̂𝜃 − 𝜃)2 = ( ̂𝜃 − 𝐸[ ̂𝜃] + 𝐸[ ̂𝜃] − 𝜃)2

= ( ̂𝜃 − 𝐸[ ̂𝜃])2 + 2( ̂𝜃 − 𝐸[ ̂𝜃])(𝐸[ ̂𝜃] − 𝜃⏟
𝑏𝑖𝑎𝑠( ̂𝜃)

) + (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝑏𝑖𝑎𝑠( ̂𝜃)2

.

The middle term is zero after taking the expectation:

𝐸[( ̂𝜃 − 𝜃)2] = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+2 𝐸[ ̂𝜃 − 𝐸[ ̂𝜃]]⏟⏟⏟⏟⏟
=0

𝑏𝑖𝑎𝑠( ̂𝜃) + 𝑏𝑖𝑎𝑠( ̂𝜃)2.

□
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For instance, consider an i.i.d. sample 𝑋1, … , 𝑋𝑛 with population mean 𝐸[𝑋𝑖] = 𝜇 and
variance 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2. Let’s study the sample mean

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

as an estimator of 𝜇. You will find that

𝐸[ ̂𝜇] = 𝜇, 𝑉 𝑎𝑟[ ̂𝜇] = 𝜎2

𝑛 .

Proof. By the linearity of the expectation, we have

𝐸[ ̂𝜇] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖]⏟
𝜇

= 𝜇.

The independence of 𝑋1, … , 𝑋𝑛 implies

𝑉 𝑎𝑟[ ̂𝜇] = 1
𝑛2 𝑉 𝑎𝑟[

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2

𝑛

□

The sample mean is unbiased for 𝜇, i.e., 𝑏𝑖𝑎𝑠( ̂𝜇) = 𝐸[ ̂𝜇] − 𝜇 = 0. The MSE equals its
variance:

𝑚𝑠𝑒( ̂𝜇) = 𝜎2

𝑛 .

The sample mean is the best unbiased estimator for the population mean in the MSE sense,
but there exists estimators with a lower MSE if we allow for a small bias.

11.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator

̃𝜇 = (1 − 𝑤) ̂𝜇, 𝑤 ∈ [0, 1].

Setting the shrinkage weight to 𝑤 = 0 gives ̃𝜇 = ̂𝜇 (no shrinkage) and 𝑤 = 1 gives ̃𝜇 = 0 (full
shrinkage). Our shrinkage estimator has the bias

𝑏𝑖𝑎𝑠( ̃𝜇) = 𝐸[(1 − 𝑤) ̂𝜇] − 𝜇 = (1 − 𝑤) 𝐸[ ̂𝜇]⏟
=𝜇

−𝜇 = −𝑤𝜇.
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The variance is

𝑉 𝑎𝑟[ ̃𝜇] = 𝑉 𝑎𝑟[(1 − 𝑤) ̂𝜇] = (1 − 𝑤)2𝑉 𝑎𝑟[ ̂𝜇] = (1 − 𝑤)2 𝜎2

𝑛 ,

and the MSE is
𝑚𝑠𝑒( ̃𝜇) = 𝑉 𝑎𝑟[ ̃𝜇] + 𝑏𝑖𝑎𝑠( ̃𝜇)2 = (1 − 𝑤)2 𝜎2

𝑛 + 𝑤2𝜇2.

The optimal weight in terms of the MSE is

𝑤∗ = 1
1 + 𝑛𝜇2/𝜎2

Proof. We take the derivative of 𝑚𝑠𝑒( ̃𝜇) across 𝑤 to obtain the first order condition:

−2(1 − 𝑤)𝜎2/𝑛 + 2𝑤𝜇2 = 0.

Solving for 𝑤 gives 𝑤(1 + 𝑛𝜇2/𝜎2) = 1. Then, 𝑤∗ is the global minimum because the second
derivative is 2𝜎2/𝑛 + 2𝜇2 > 0. □

For instance, if 𝜇 = 1, 𝜎2 = 1, and 𝑛 = 99, we have 𝑤∗ = 0.01.

The shrinked sample mean

̃𝜇∗ = (1 − 𝑤∗) ̂𝜇 = 𝑛𝜇2/𝜎2

1 + 𝑛𝜇2/𝜎2
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

has a lower MSE than the usual sample mean:

𝑚𝑠𝑒( ̃𝜇∗) = (1 − 𝑤∗)𝜎2

𝑛 + 𝑤2𝜇2 < 𝜎2

𝑛 = 𝑚𝑠𝑒( ̂𝜇)

This is a remarkable result because it tells us that the sample mean is not the best we can do
to estimate a population mean. The shrinked estimator is more efficient. Is biased, but the
biased vanishes asymptotically since lim𝑛→∞ 𝑤∗ = 0.

The optimal shrinkage parameter 𝑤∗ is infeasible because we do not know 𝜇2/𝜎2. It is not
very useful for empirical practice, and taking sample means is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.
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11.3 High-dimensional regression

Least squares regression works well when the number of regressors 𝑘 is small relative to the
number of observations 𝑛. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when 𝑘 is too large compared to 𝑛. Specifically, if
𝑘 = 𝑛, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among 𝐽 variables, we
get another ∑𝐽−1

𝑖=1 𝑖 = 𝐽(𝐽 −1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If 𝑘 > 𝑛, the OLS estimator is not uniquely defined because 𝑋𝑋𝑋′𝑋𝑋𝑋 does not have full rank. If
𝑘 ≈ 𝑛 the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (𝑘-variate) estimator ̂𝛽𝛽𝛽𝑜𝑙𝑠 the (conditional) MSE is

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)′( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] + 𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)(𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋))′,

where, under random sampling, OLS is unbiased:

𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] − 𝛽𝛽𝛽 = 000.

Consequently, the MSE of OLS equals its variance:

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

11.4 Ridge Regression

To avoid that (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 becomes very large or undefined for large 𝑘, we can introduce a shrink-
age parameter 𝜆 and define the ridge regression estimator

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝑌𝑌𝑌 . (11.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
𝑘 > 𝑛. The inverse (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1 exists as long as 𝜆 > 0. For 𝜆 = 0, the ridge estimator
coincides with the OLS estimator.
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While the OLS estimator is motivated from the minimization problem

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽),

the ridge estimator is the minimizer of

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽. (11.2)

The minimization problem introduces a penalty for large values of 𝛽𝛽𝛽. The solution is then
shrunk towards zero by 𝜆 > 0.

11.5 Standardization

The regressors and dependent variables are typically standardized:

𝑋𝑖𝑗 = 𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗

√ 1
𝑛−1 ∑𝑛

𝑖=1(𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗)2
, 𝑋𝑋𝑋𝑗 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑗

It is common practice to standardize the regressors (and dependent variable) in ridge regres-
sion.

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-
ately influence the penalty term through 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽 = 𝜆 ∑𝑛

𝑗=1 𝛽2
𝑗 . Variables with smaller variance

may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

11.6 Ridge Properties

The bias of the ridge estimator is

𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) = −𝜆(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝛽𝛽𝛽,

and the covariance matrix is

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1.
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In the homoskedastic linear regression model, we have

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) < 𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)

if 0 < 𝜆 < 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽.

Similarly to the sample mean case, the upper bound 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽 does not give practical guidance
for selecting 𝜆 because 𝛽𝛽𝛽 and 𝜎2 are unknown.

11.7 Mean squared prediction error

The optimal value for 𝜆 minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 𝛽𝛽𝛽 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛) be our data set (in-sample observations) with ridge estimator Equa-
tion 11.1, and let (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛).
The mean squared prediction error (MSPE) is

𝑀𝑆𝑃𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒) = 𝐸[(𝑌 𝑜𝑜𝑠 − (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒)2].

Note that (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) is independent of ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 because it has not been used for estimation.
𝑌 (𝑋𝑋𝑋𝑜𝑜𝑠) = (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 is the predicted value of 𝑌 𝑜𝑜𝑠.

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size 𝑛𝑡𝑟𝑎𝑖𝑛
and a testing sample (out-of-sample) of size 𝑛𝑡𝑒𝑠𝑡 with 𝑛 = 𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡:

(𝑌 𝑖𝑛𝑠
1 ,𝑋𝑋𝑋𝑖𝑛𝑠

1 ), … (𝑌 𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

,𝑋𝑋𝑋𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

), (𝑌 𝑜𝑜𝑠
1 ,𝑋𝑋𝑋𝑜𝑜𝑠

1 ), … (𝑌 𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

,𝑋𝑋𝑋𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

)

2) We estimate 𝛽𝛽𝛽 using the training sample:

̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒 = (

𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 (𝑋𝑋𝑋𝑖𝑛𝑠

𝑖 )′ + 𝜆𝐼𝐼𝐼𝑘)
−1 𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 𝑌 𝑖𝑛𝑠

𝑖 .

3) We evaluate the empirical MSPE using the testing sample,

𝑀𝑆𝑃𝐸𝑠𝑝𝑙𝑖𝑡 = 1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡

∑
𝑖=1

(𝑌 𝑜𝑜𝑠
𝑖 − (𝑋𝑋𝑋𝑜𝑜𝑠

𝑖 )′ ̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒)

2
(11.3)

Steps 2 and 3 are repeated for different values for 𝜆. We select the value for 𝜆 that gives the
smallest estimated MSPE.
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11.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select 𝑚 subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into 𝑗 = 1, … , 𝑚 randomly chosen folds/subsamples of approximately
equal size:

(𝑌 (1)
1 ,𝑋𝑋𝑋(1)

1 ), … , (𝑌 (1)
𝑛1 ,𝑋𝑋𝑋(1)

𝑛1 )
(𝑌 (2)

1 ,𝑋𝑋𝑋(2)
1 ), … , (𝑌 (2)

𝑛2 ,𝑋𝑋𝑋(2)
𝑛2 )

⋮
(𝑌 (𝑚)

1 ,𝑋𝑋𝑋(𝑚)
1 ), … , (𝑌 (𝑚)

𝑛𝑚 ,𝑋𝑋𝑋(𝑚)
𝑛𝑚 )

2) Select 𝑗 ∈ {1, … , 𝑚} as left-out test sample and use the other subsamples to compute
the ridge estimator ̂𝛽𝛽𝛽

(−𝑗)
𝑟𝑖𝑑𝑔𝑒, where the 𝑗-th fold is not used.

3) Compute Equation 11.3 using the j-th folds as a test sample, i.e.,

𝑀𝑆𝑃𝐸𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

(𝑌 (𝑗)
𝑖 − (𝑋𝑋𝑋(𝑗)

𝑖 )′ ̂𝛽𝛽𝛽
(−𝑗)
𝑟𝑖𝑑𝑔𝑒)

2

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

𝑀𝑆𝑃𝐸𝑚𝑓𝑜𝑙𝑑 =
𝑚

∑
𝑗=1

𝑛𝑗
𝑛 𝑀𝑆𝑃𝐸𝑗,

where 𝑛 = ∑𝑚
𝑗=1 𝑛𝑗 is the total number of observations.

5) Repeat these steps over a grid of tuning parameters for 𝜆, and select the value for 𝜆 that
minimizes 𝑀𝑆𝑃 𝐸𝑚𝑓𝑜𝑙𝑑.

Common values for 𝑚 are 𝑚 = 5 and 𝑚 = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is 𝑚 = 𝑛, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOVC). LOOVC might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.
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11.9 L2 Regularization: Ridge

The ℓ𝑝-norm of a vector 𝑎𝑎𝑎 = (𝑎1, … , 𝑎𝑘)′ is defined as

‖𝑎𝑎𝑎‖𝑝 = (
𝑘

∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

.

Important special cases are the ℓ1-norm and ℓ2-norm:

‖𝑎𝑎𝑎‖1 =
𝑘

∑
𝑗=1

|𝑎𝑗|, ‖𝑎𝑎𝑎‖2 = (
𝑘

∑
𝑗=1

𝑎2
𝑗)

1/2
=

√
𝑎𝑎𝑎′𝑎𝑎𝑎.

The ℓ1-norm is the sum of absolute values, and the ℓ2-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the squared ℓ2-norm of the coefficient vector, ‖𝛽𝛽𝛽‖2

2 = 𝛽𝛽𝛽′𝛽𝛽𝛽. Ridge is the solution to
the minimization problem Equation 11.2, which can be written as

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖2
2.

11.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

̂𝛽𝛽𝛽𝑙𝑎𝑠𝑠𝑜 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖1,

where ‖𝛽𝛽𝛽‖1 = ∑𝑘
𝑗=1 |𝛽𝑗|.

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 ≤ 𝛼 ≤ 1:

̂𝛽𝛽𝛽𝑛𝑒𝑡,𝛼 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆(𝛼‖𝛽𝛽𝛽‖1 + (1 − 𝛼)‖𝛽𝛽𝛽‖2
2).

This includes ridge (𝛼 = 0) and lasso (𝛼 = 1) as special cases.

Ridge has a closed form solution given by Equation 11.1. Lasso and elastic net with 𝛼 >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.
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11.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description. We estimate a ridge regression model to predict the variable mpg (miles
per gallon) using the other variables. We consider the values 𝜆 = 0.5 and 𝜆 = 2.5.

Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet() function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix 𝑋𝑋𝑋 and converts categorical variables into dummy variables.

library(glmnet)
Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1]
dim(X)

[1] 32 10

fit.ridge1 = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge1$beta

10 x 1 sparse Matrix of class "dgCMatrix"
s0

cyl -0.250698757
disp -0.001893223
hp -0.013079878
drat 0.978514241
wt -1.902328296
qsec 0.316107066
vs 0.472551434
am 2.113922488
gear 0.631836101
carb -0.661215998

fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fit.ridge2$beta

10 x 1 sparse Matrix of class "dgCMatrix"
s0

cyl -0.368541841
disp -0.005184086
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hp -0.011710951
drat 1.052837310
wt -1.264016952
qsec 0.164790158
vs 0.755205256
am 1.655241565
gear 0.546732963
carb -0.560023425

You can use the command coef(fit.ridge1) to also display the intercept. By default, the
regressors are standardized. You can turn off this setting by using the argument standardize
= FALSE. The ℓ2 norm of the coefficients is small for larger values of 𝜆:

c(sqrt(sum(fit.ridge1$beta)),
sqrt(sum(fit.ridge2$beta)))

[1] 1.297581 1.401902

The lasso estimator (𝛼 = 1) sets many coefficient equal to zero:

fit.lasso = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
coef(fit.lasso)

11 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 35.88689755
cyl -0.85565434
disp .
hp -0.01411517
drat 0.07603453
wt -2.67338139
qsec .
vs .
am 0.48651385
gear .
carb -0.10722338

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:
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set.seed(123) ## for reproducibility
cv.glmnet(x=X, y=Y, alpha = 0)$lambda.min

[1] 2.746789

cv.glmnet(x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ^2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has 𝑛 = 32 observations.

X.large = model.matrix(mpg ~. ^2, data = mtcars)[,-1]
dim(X.large)

[1] 32 55

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
coef(fit.ridgelarge)

56 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 1.315259e+01
cyl -4.061218e-02
disp -8.137358e-04
hp -5.588290e-03
drat 4.386174e-01
wt -5.547986e-01
qsec 2.308772e-01
vs 6.705889e-01
am 4.379822e-01
gear 8.788479e-01
carb -1.537294e-01
cyl:disp 6.830897e-05
cyl:hp 1.351742e-04
cyl:drat 2.455464e-02
cyl:wt -2.621868e-03
cyl:qsec 3.358094e-03
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cyl:vs 1.591177e-01
cyl:am 6.102385e-02
cyl:gear 3.481957e-02
cyl:carb 7.499023e-04
disp:hp 8.592521e-06
disp:drat -9.421536e-05
disp:wt 2.191122e-04
disp:qsec -1.789464e-05
disp:vs -1.280463e-03
disp:am -9.043597e-03
disp:gear -3.601317e-04
disp:carb -1.255358e-04
hp:drat -2.086003e-03
hp:wt 4.404097e-04
hp:qsec -4.347470e-04
hp:vs -1.858343e-02
hp:am -2.604620e-03
hp:gear -3.464491e-04
hp:carb 9.107116e-04
drat:wt -1.766081e-01
drat:qsec 3.828881e-02
drat:vs 1.123963e-01
drat:am 5.047132e-02
drat:gear 8.294201e-02
drat:carb -4.770358e-02
wt:qsec -3.289204e-02
wt:vs -3.239643e-01
wt:am -4.197733e-01
wt:gear -1.890703e-01
wt:carb -1.497574e-02
qsec:vs 3.114409e-02
qsec:am 5.199239e-02
qsec:gear 7.035311e-02
qsec:carb -1.859676e-02
vs:am 8.688134e-01
vs:gear 3.311330e-01
vs:carb -2.768199e-01
am:gear 1.462749e-01
am:carb 1.588431e-01
gear:carb 8.165764e-03
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fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda = 0.5)
coef(fit.lassolarge)

56 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 23.655330629
cyl -0.036308043
disp .
hp .
drat .
wt -1.301739306
qsec .
vs .
am .
gear .
carb .
cyl:disp .
cyl:hp .
cyl:drat .
cyl:wt .
cyl:qsec .
cyl:vs .
cyl:am .
cyl:gear .
cyl:carb .
disp:hp .
disp:drat .
disp:wt .
disp:qsec .
disp:vs .
disp:am .
disp:gear .
disp:carb .
hp:drat .
hp:wt .
hp:qsec -0.001328046
hp:vs .
hp:am .
hp:gear .
hp:carb .
drat:wt -0.337667877
drat:qsec 0.073725291
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drat:vs .
drat:am .
drat:gear .
drat:carb .
wt:qsec .
wt:vs .
wt:am .
wt:gear .
wt:carb .
qsec:vs .
qsec:am .
qsec:gear 0.041623415
qsec:carb .
vs:am 2.429571498
vs:gear .
vs:carb .
am:gear .
am:carb .
gear:carb .

11.12 R-codes

methods-sec11.R
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