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Welcome to the course!

Empirical Methods is a graduate-level course in regression analysis focusing on specialized
econometric tools. We cover advanced topics such as panel data methods, generalized lin-
ear models, high-dimensional regression, instrumental variables, causal inference, and time
series regression. Emphasis is on both theoretical understanding of the methods and practical
applications using the R programming language.

Course Materials

• This webpage and its pdf version: the online script

• eWhiteboard: the whiteboard notes

• ILIAS: further course material

• RScripts: codes from the lecture

Literature

The course is primarily based on the following textbook:

• Stock, J.H. and Watson, M.W. (2019). Introduction to Econometrics (Fourth
Edition). Pearson.

The Global Edition of Stock and Watson (2019) is available here. To view the book, please
activate your Uni Köln VPN connection.

Recommended reading to accompany the lecture:

Part Reading
A – Basic Principles Stock and Watson: Sections 1–3
B – Linear Regression Stock and Watson: Sections 4–9 and 18–19
C – Panel Data Methods Stock and Watson: Section 10
D – Big Data Econometrics Stock and Watson: Section 14
E – Time Series Methods Stock and Watson: Section 15
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For specialized topics beyond Stock and Watson (2019), the following textbooks are recom-
mended:

• James, G., Witten, D., Hastie, T., and Tibshirani, R. (2019). An Introduction to
Statistical Learning with Applications to R (Second Edition). Springer.

• Davidson, R., and MacKinnon, J.G. (2004). Econometric Theory and Methods.
Oxford University Press.

James et al. (2019) is available for free here and here. Davidson and MacKinnon (2004) is
available for free on the author’s webpage: LINK. Printed versions of the books are available
from the university library.

Preparation

You should also be familiar with the basic concepts of matrix algebra and probability
theory. Please consider the following refreshers:

Crash Course in Matrix Algebra

Probability Theory for Econometricians

We will be using the statistical programming language R. Please make sure you have R and
RStudio installed before the class. Here you find the installation instructions for the software.
If you are a beginner, please consider this short introduction, which contains many valuable
resources:

Getting Started with R

Assessment

The course will be graded by a 90-minute exam. More information about the assessment can
be found on ILIAS.

Communication

Feel free to use the ILIAS methods forum to discuss lecture topics and ask questions. Please
also let me know if you find any typos. Of course, you can reach me via e-mail: sven.otto@uni-
koeln.de
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Important Dates

Registration deadline exam 1 Jul 04, 2024
Exam 1 Jul 18, 2024, 16:00-17:30
Registration deadline exam 2 Aug 13, 2024
Exam 2 (alternate date) Aug 20, 2024, 11:30-13:00

Please register for the exam on time. If you miss the registration deadline, you will not be
able to take the exam (the Examinations Office is very strict about this). You only need to
take one of the two exams to complete the course. The second exam will serve as a make-up
exam for those who fail the first exam or do not take the first exam.

Timetable

The course is held on Tuesdays from 14:00 to 15:30 in Hörsaal XXI and on Thursdays every
two weeks from 16:00 to 17:30 in Hörsaal VI: KLIPS TIMETABLE.

R-Packages

To run the R code of the lecture script, you will need to install some additional packages.

install.packages(
c("AER", "plm", "dynlm", "glmnet", "moments", "urca",

"tidyverse", "stargazer", "BVAR",
"palmerpenguins", "kableExtra", "scatterplot3d"))

Some further datasets are contained in my package teachingdata, which is available in a
GitHub repository:

install.packages("remotes")
remotes::install_github("ottosven/teachingdata")

See the Ilias course on how to install teachingdata2.

9

https://klips2.uni-koeln.de/co/pl/ui/%24ctx;design=pl;header=max;lang=de/wbTermin_list.wbLehrveranstaltung?pStpSpNr=461431


Part I

A) Basic Principles
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1 Data

1.1 Datasets

A univariate dataset is a sequence of observations 𝑌1, … , 𝑌𝑛. These 𝑛 observations can be
organized into the data vector 𝑌𝑌𝑌 , represented as 𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)′. For example, if you
conduct a survey and ask five individuals about their hourly earnings, your data vector might
look like

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22
23.85
10.00
6.39
7.42

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Typically we have data on more than one variable, such as years of education and the gender.
Categorical variables are often encoded as dummy variables, which are binary variables. The
female dummy variable is defined as 1 if the gender of the person is female and 0 otherwise.

person wage education female
1 18.22 16 1
2 23.85 18 0
3 10.00 16 1
4 6.39 13 0
5 7.42 14 0

A 𝑘-variate dataset is a collection of 𝑛 vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 containing data on 𝑘 variables.
The 𝑖-th vector 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′ contains the data on all 𝑘 variables for individual 𝑖. Thus,
𝑋𝑖𝑗 represents the value for the 𝑗-th variable of individual 𝑖.
The full 𝑘-variate dataset is structured in the 𝑛 × 𝑘 data matrix 𝑋𝑋𝑋:

𝑋𝑋𝑋 = ⎛⎜
⎝

𝑋𝑋𝑋′
1

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟
⎠

= ⎛⎜
⎝

𝑋11 … 𝑋1𝑘
⋮ ⋱ ⋮

𝑋𝑛1 … 𝑋𝑛𝑘

⎞⎟
⎠

The 𝑖-th row in 𝑋𝑋𝑋 corresponds to the values from 𝑋𝑋𝑋𝑖. Since 𝑋𝑋𝑋𝑖 is a column vector, we use the
transpose notation 𝑋𝑋𝑋′

𝑖, which is a row vector. The data matrix and vectors for our example
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are:

𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜⎜⎜
⎝

18.22 16 1
23.85 18 0
10.00 16 1
6.39 13 0
7.42 14 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋1 = ⎛⎜
⎝

18.22
16
1

⎞⎟
⎠

,𝑋𝑋𝑋2 = ⎛⎜
⎝

23.85
18
0

⎞⎟
⎠

, …

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, please consult the following re-
sources:

Crash Course on Matrix Algebra:
matrix.svenotto.com
Section 19.1 of the Stock and Watson book also provides a brief overview of matrix
algebra concepts.

1.2 R programming language

The best way to learn statistical methods is to program and apply them yourself. Throughout
this course, we will use the R programming language for implementing empirical methods and
analyzing real-world datasets.

If you are just starting with R, it is crucial to familiarize yourself with its basics. Here’s an
introductory tutorial, which contains a lot of valuable resources:

Getting Started with R:
rintro.svenotto.com

For those new to R, I also recommend the interactive R package SWIRL, which offers an excel-
lent way to learn directly within the R environment. Additionally, two highly recommended
online books are Hands-On Programming with R (with focus on programming) and R for Data
Science (with focus on data analysis).

One of the best features of R is its extensive ecosystem of packages contributed by the statis-
tical community. You find R packages for almost any statistical method out there and many
statisticians provide R packages to accompany their research.
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Maybe the most frequently used package is the tidyverse package, which provides a compre-
hensive suite of data management and visualization tools. You can install the package with
the command install.packages("tidyverse") and you can load it with

library(tidyverse)

at the beginning of your code. We will explore several additional packages in the course of the
lecture.

1.3 Datasets in R

R includes many built-in datasets and packages of datasets that can be loaded directly into
your R environment. For illustration, we consider the penguins dataset available in the
palmerpenguins package. To load this dataset into your R session, simply use:

data(penguins, package = "palmerpenguins")

class(penguins)

[1] "tbl_df" "tbl" "data.frame"

The penguins dataset is stored as a data.frame, R’s most common data storage class for
tabular data as in 𝑋𝑋𝑋. It organizes data in the form of a table, with variables as columns and
observations as rows. The penguins object is also identified as a tibble (or tbl_df), the
tidyverse version of a data.frame.

To inspect the structure of your dataset, you can use str() or glimpse():

str(penguins)

tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
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The dataset contains variables of various types: fct(factor) for categorical data,
dbl(numeric) for real or continuous data, and int(integer) for integer or discrete
data. The head() function displays its first few rows:

head(penguins)

# A tibble: 6 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
# i 2 more variables: sex <fct>, year <int>

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example:

penguins |> select(body_mass_g, bill_length_mm, species) |> summary()

body_mass_g bill_length_mm species
Min. :2700 Min. :32.10 Adelie :152
1st Qu.:3550 1st Qu.:39.23 Chinstrap: 68
Median :4050 Median :44.45 Gentoo :124
Mean :4202 Mean :43.92
3rd Qu.:4750 3rd Qu.:48.50
Max. :6300 Max. :59.60
NA's :2 NA's :2

The summary() function presents a concise overview, showing absolute frequencies for cate-
gorical variables and descriptive statistics for numerical variables, along with information on
missing values (NA). To exclude all rows with missing values, we can use na.omit(penguins).

A dummy variable for the penguin species Gentoo can be created with the following com-
mand:

gentoo = ifelse(penguins$species == "Gentoo", 1, 0)

14



The $ sign accesses a specific column of a data frame by name, as in penguins$species to
select the variable species from penguins.

To convert factor variables into dummy variables efficiently, the fastDummies package’s
dummy_cols() function can be used. Let’s create dummy variables for each of the three
species.

library(fastDummies)
penguins.new = dummy_cols(penguins,select_columns = "species")

Scatterplots provide further insights:

plot(bill_length_mm ~ body_mass_g, data = penguins,
xlab = "body mass (g)", ylab = "bill length (mm)")
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We can assign unique colors to each species:

colors = c("red", "blue", "purple")
plot(bill_length_mm ~ body_mass_g, col = colors[species], data = penguins,

xlab = "body mass (g)", ylab = "bill length (mm)")
legend("bottomright", legend = levels(penguins$species),

fill = colors, title = "Species")
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1.4 Importing data

The internet serves as a vast repository for data in various formats, with csv (comma-separated
values), xlsx (Microsoft Excel spreadsheets), and txt (text files) being the most commonly
used.

Many organizations, such as the German Bundesbank, the German Federal Statistical Office,
the ECB (European Central Bank), Eurostat, and FRED (Federal Reserve Economic Data),
offer economic datasets in these formats. These datasets can be accessed through their websites
or via Application Programming Interfaces (APIs), which allow direct downloading of data into
R. Accessing data via APIs often requires registering for an API token on the organization’s
website.

R supports various functions for different data formats:

• read.csv() for reading comma-separated values
• read.csv2() for semicolon-separated values (adopting the German data convention of

using ‘,’ as the decimal mark)
• read.table() for whitespace-separated files
• read_excel() for Microsoft Excel files (requires the readxl package)
• read_stata() for STATA files (requires the haven package)

The rvest package provides web scraping tools to extract data directly from HTML web
pages.

In academic writing, it is crucial to provide enough information about data sources to ensure
transparency and reproducibility.

16



Let’s explore the CPS dataset from Bruce Hansen’s website. The Current Population Survey
(CPS) is a monthly survey conducted by the U.S. Census Bureau for the Bureau of Labor
Statistics, primarily used to measure the labor force status of the U.S. population.

• Dataset: cps09mar.txt
• Description: cps09mar_description.pdf

cps = read.table("https://users.ssc.wisc.edu/~bhansen/econometrics/cps09mar.txt",
col.names=c("age","female","hisp","education","earnings","hours",

"week", "union","uncov","region","race","marital")) |>
mutate(race = as.factor(race),

region = as.factor(region),
marital = as.factor(marital),
experience = (age - education - 6), #years since graduation
wage = earnings/(week*hours), #wage per hours
married = ifelse(marital %in% c(1,2), 1, 0), #dummy
college = ifelse(education >= 14, 1, 0),
black = ifelse(race %in% c(2,6,10,11,12,15,16,19), 1, 0),
asian = ifelse(race %in% c(4,8,11,13,14,16,17,18,19), 1, 0))

1.5 Data types

The most common types of econonomic data are:

• Cross-sectional data: Data collected on many entities without regard to time.

• Time series data: Data on a single entity collected over multiple time periods.

• Panel data: Data collected on multiple entities over multiple time points, combining
features of both cross-sectional and time series data.

The cps data is an example of a cross-sectional dataset.

str(cps)

'data.frame': 50742 obs. of 18 variables:
$ age : int 52 38 38 41 42 66 51 49 33 52 ...
$ female : int 0 0 0 1 0 1 0 1 0 1 ...
$ hisp : int 0 0 0 0 0 0 0 0 0 0 ...
$ education : int 12 18 14 13 13 13 16 16 16 14 ...
$ earnings : int 146000 50000 32000 47000 161525 33000 37000 37000 80000 32000 ...
$ hours : int 45 45 40 40 50 40 44 44 40 40 ...
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$ week : int 52 52 51 52 52 52 52 52 52 52 ...
$ union : int 0 0 0 0 1 0 0 0 0 0 ...
$ uncov : int 0 0 0 0 0 0 0 0 0 0 ...
$ region : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
$ race : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ marital : Factor w/ 7 levels "1","2","3","4",..: 1 1 1 1 1 5 1 1 1 1 ...
$ experience: num 34 14 18 22 23 47 29 27 11 32 ...
$ wage : num 62.4 21.4 15.7 22.6 62.1 ...
$ married : num 1 1 1 1 1 0 1 1 1 1 ...
$ college : num 0 1 1 0 0 0 1 1 1 1 ...
$ black : num 0 0 0 0 0 0 0 0 0 0 ...
$ asian : num 0 0 0 0 0 0 0 0 0 0 ...

My repository teachingdata contains some recent time series datasets, for instance, the nominal
GDP growth of Germany:

data("gdpgr", package="teachingdata")
str(gdpgr)

Time-Series [1:128] from 1992 to 2024: 0.0874 0.0651 0.0733 0.0586 0.0201 ...

The dataset Fatalities is a panel dataset. It contains variables related to traffic fatalities
across different states and years in the United States:

data(Fatalities, package = "AER")
str(Fatalities)

'data.frame': 336 obs. of 34 variables:
$ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
$ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
$ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
$ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
$ income : num 10544 10733 11109 11333 11662 ...
$ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
$ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
$ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
$ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
$ drinkage : num 19 19 19 19.7 21 ...
$ dry : num 25 23 24 23.6 23.5 ...
$ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
$ miles : num 7234 7836 8263 8727 8953 ...
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$ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
$ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
$ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
$ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
$ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
$ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
$ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
$ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
$ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
$ afatal : num 309 342 305 277 361 ...
$ pop : num 3942002 3960008 3988992 4021008 4049994 ...
$ pop1517 : num 209000 202000 197000 195000 204000 ...
$ pop1820 : num 221553 219125 216724 214349 212000 ...
$ pop2124 : num 290000 290000 288000 284000 263000 ...
$ milestot : num 28516 31032 32961 35091 36259 ...
$ unempus : num 9.7 9.6 7.5 7.2 7 ...
$ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
$ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...

1.6 Random variables

Data is usually the result of a random experiment. The gender of the next person you meet,
the daily fluctuation of a stock price, the monthly music streams of your favourite artist,
the annual number of pizzas consumed - all of this information involves a certain amount of
randomness.

In statistical sciences, we interpret a univariate dataset 𝑌1, … , 𝑌𝑛 as a sequence of random
variables. Similarly, a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is viewed as a sequence of random
vectors.

Cross-sectional data is typically characterized by an identical distribution across its individ-
ual observations, meaning each element in the sequence 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 has the same distribution
function.

For example, if 𝑌1, … , 𝑌𝑛 represent the wage levels of different individuals in Germany, each
𝑌𝑖 is drawn from the same distribution 𝐹 , which in this context is the wage distribution across
the country. Similarly, if 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 are bivariate random variables containing wages and years
of education for individuals, each 𝑋𝑋𝑋𝑖 follows the same bivariate distribution 𝐺, which is the
joint distribution of wages and education levels.
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A primary goal of econometric methods and statistical inference is to gain insights about fea-
tures of these true but unknown population distributions 𝐹 or 𝐺 using the available data.
Econometric methods require certain assumptions about the sampling process and the under-
lying population distributions. Thus, a solid knowledge of probability theory is essential for
econometric modelling.

For a recap on probability theory for econometricians, consider the following refresher:

Probability Theory for Econometricians:
https://probability.svenotto.com/
Section 2 of the Stock and Watson book also provides a review of the most important
concepts.

1.7 Sampling

The ideal scenario for data collection involves simple random sampling, where each individ-
ual in the population has an equal chance of being selected (independently and identically
distributed).

i.i.d. sample

An independently and identically distributed (i.i.d.) sample, or random sample, consists of a
sequence of 𝑘-variate random vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 that have the same probability distribution
𝐹 and are mutually independent, i.e., for any 𝑖 ≠ 𝑗 and for all 𝑎𝑎𝑎,𝑏𝑏𝑏 ∈ ℝ𝑘,

𝑃(𝑋𝑋𝑋𝑖 ≤ 𝑎𝑎𝑎,𝑋𝑋𝑋𝑗 ≤ 𝑏𝑏𝑏) = 𝑃(𝑋𝑋𝑋𝑖 ≤ 𝑎𝑎𝑎)𝑃(𝑋𝑋𝑋𝑗 ≤ 𝑏𝑏𝑏).

𝐹 is called population distribution or data-generating process (DGP).

The Current Population Survey (CPS) involves random interviews with individuals from the
U.S. labor force may be regarded as an i.i.d. sample. Methods like survey sampling, admin-
istrative records, direct observation, web scraping, and field/laboratory experiments can yield
i.i.d. sampling for economic cross-sectional datasets. In a random sample there is no inherent
ordering that would introduce systematic dependencies.

Note that not all cross-sectional data comes from random sampling. For example, clustered
sampling occurs when only specific groups (e.g., classrooms) are chosen randomly (students
from the same classroom share the same environment and teacher’s performance).
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Time series and panel data are intrinsically not independent due to the sequential nature of
the observations. We usually expect observations close in time to be strongly dependent and
observations at greater distances to be less dependent.

For time series data we assume that there exists some underlying stochastic process represented
as a doubly infinite sequence of random variables

{𝑌𝑡}𝑡∈ℤ = {… , 𝑌−1, 𝑌0, 𝑌1, … , 𝑌𝑛⏟⏟⏟⏟⏟
observed part

, 𝑌𝑛+1, …},

where the time series sample {𝑌1, … , 𝑌𝑛} is only the observed part of the process.

In order to learn from the observed part about the future (forecasting) or make inference on
the dependence with other variables, we typically assume that the distribution of the time
series sample does not depend on which time periods are observed, which excludes structural
breaks or stochastic trends.

Stationary time series

A time series process {𝑌𝑖}𝑖∈ℤ is called stationary if the mean 𝜇 and the autocovariances 𝛾(𝜏)
do not depend on the time point 𝑖. That is,

𝜇 ∶= 𝐸[𝑌𝑖] < ∞, for all 𝑖,

and
𝛾(𝜏) ∶= 𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑖−𝜏) < ∞ for all 𝑖 and 𝜏.

The quarterly nominal GDP is clearly nonstationary. It exhibits trending behavior and season-
alities. The annual nominal GDP growth rates can be regarded as a stationary time series.

Macroeconomic time series often indicate trending behavior and/or seasonalities. However,
we can often use simple transformations to convert nonstationary time series into station-
ary series, such as differences (diff(your_series, your_frequency)) or growth rates
(diff(log(your_series), your_frequency)).

The frequency is the number of observed periods per time basis. Time series (ts) objects in
R are defined in terms of a yearly time basis. Yearly time series have frequency 1, quarterly
have frequency 4, and monthly have frequency 12.

Here are some common transformations:

• First differences: Δ𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−1
• Growth rates: log(𝑌𝑖) − log(𝑌𝑖−1)

For seasonal data with frequency 4:
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• Fourth differences: Δ𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−4
• Annual growth rates: log(𝑌𝑖) − log(𝑌𝑖−4)

1.8 R-codes

methods-sec01.R
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2 Summary Statistics

In this section you find an overview of the most important summary statistics commands. In
the table below, your_data represents some univariate data (vector), and your_df represents
a data.frame of multivariate data (matrix).

Statistic Command
Sample Size (n) length(your_data)
Maximum Value max(your_data)
Minimum Value min(your_data)
Total Sum sum(your_data)
Mean mean(your_data)
Variance var(your_data)
Standard Deviation sd(your_data)
Skewness skewness(your_data) (requires moments package)
Kurtosis kurtosis(your_data) (requires moments package)
Order statistics sort(your_data)
Empirical CDF ecdf(your_data)
Median median(your_data)
p-Quantile quantile(your_data, p)
Boxplot boxplot(your_data)
Histogram hist(your_data)
Kernel density estimator plot(density(your_data))
Covariance cov(your_data1, your_data2)
Correlation cor(your_data1, your_data2)
Mean vector colMeans(your_df)
Covariance matrix cov(your_df)
Correlation matrix cor(your_df)

Note: Ensure that your data does not contain missing values (NA’s) for these commands. Use
na.omit() or include na.rm=TRUE in functions to handle missing data.
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2.1 Sample moments

Mean

The sample mean (arithmetic mean) is the most common measure of central tendency:

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

In i.i.d. samples, it converges in probability to the expected value as sample size grows (law
of large numbers). I.e., it is a consistent estimator for the population mean:

𝑌
𝑝

→ 𝐸[𝑌 ] as 𝑛 → ∞.

The law of large numbers also holds for stationary time series with 𝛾(𝜏) → 0 as 𝜏 → ∞.

Variance

The variance measures the spread around the mean. The sample variance is

�̂�2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2,

and the adjusted sample variance is

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

Note that var(your_data) computes 𝑠2
𝑌 , which is the conventional estimator for the popula-

tion variance
𝑉 𝑎𝑟[𝑌 ] = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = 𝐸[𝑌 2] − 𝐸[𝑌 ]2.

𝑠2
𝑌 is unbiased whereas �̂�2

𝑌 is biased but has a lower sampling variance. For i.i.d. samples,
both versions are consistent estimators for the population variance.

Standard deviation

The standard deviation, the square root of the variance, is a measure of dispersion in the
original unit of data. It quantifies the average distance data points typically deviate from the
mean of their distribution.
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The sample standard deviation and its adjusted version are the square roots of the correspond-
ing variance formulas:

�̂�𝑌 = √𝑌 2 − 𝑌 2, 𝑠𝑌 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2

Note that sd(your_data) computes 𝑠𝑌 and not �̂�𝑌 . Both versions are consistent estimators
for the population standard deviation 𝑠𝑑(𝑌 ) = √𝑉 𝑎𝑟[𝑌 ] for i.i.d. samples.

Skewness

The skewness is a measure of asymmetry around the mean. The sample skewness is

𝑠𝑘𝑒𝑤 = 1
𝑛�̂�3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

It is a consistent estimator for the population skewness

𝑠𝑘𝑒𝑤 = 𝐸[(𝑌 − 𝐸[𝑌 ])3]
𝑠𝑑(𝑌 )3 .

A non-zero skewness indicates an asymmetric distribution, with positive values indicating a
right tail and negative values a left tail. Below you find an illustration using density func-
tions:

Positive skewNegative skew

Kurtosis

Kurtosis measures the heaviness of the tails of a distribution. It indicates how likely extreme
outliers are. The sample kurtosis is

𝑘𝑢𝑟𝑡 = 1
𝑛�̂�4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.

It is a consistent estimator for the population kurtosis

𝑘𝑢𝑟𝑡 = 𝐸[(𝑌 − 𝐸[𝑌 ])4]
𝑉 𝑎𝑟[𝑌 ]2 .
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The reference value is 3, which is the kurtosis of the standard normal distribution 𝒩(0, 1).
Values significantly above 3 indicate a distribution with heavy tails, such as the t-distribution
𝑡(5) with a kurtosis of 9, implying a higher likelihood of outliers compared to 𝒩(0, 1). Con-
versely, a distribution with kurtosis significantly below 3, such as the uniform distribution
(kurt = 1.8), is called light-tailed, indicating fewer outliers. Both skewness and kurtosis are
unit free measures.

Below you find the probability densities of the 𝒩(0, 1) (solid) and the 𝑡(5) (dashed) distribu-
tions:
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Higher Moments

The 𝑟-th sample moment is

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .

The sample mean is the first sample moment. The variance is the second minus the first
squared sample moment (centered sample moment). The standard deviation, skewness, and
kurtosis are also functions of the first four sample moments.

library(moments)
data(penguins, package="palmerpenguins")
Y = na.omit(penguins$body_mass_g)
length(Y)
max(Y)
min(Y)
sum(Y)
mean(Y)
var(Y)
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sd(Y)
skewness(Y)
kurtosis(Y)

2.2 Empirical distribution

The distribution 𝐹 of a random variable 𝑌 is defined by its cumulative distribution func-
tion (CDF)

𝐹(𝑎) = 𝑃(𝑌 ≤ 𝑎), 𝑎 ∈ ℝ.
With knowledge of 𝐹(⋅), you can calculate the probability of 𝑌 falling within any interval
𝐼 ⊆ ℝ, or any countable union of such intervals, by applying the rules of probability.

The empirical cumulative distribution function (ECDF) is the sample-based counterpart
of the CDF. It represents the proportion of observations within the sample that are less than
or equal to a certain value 𝑎. To define the ECDF in mathematical terms, we use the concept
of order statistics 𝑌(ℎ), which is the sample data arranged in ascending order such that

𝑌(1) ≤ 𝑌(2) ≤ … ≤ 𝑌(𝑛).

You can obtain the order statistics for your dataset using sort(your_data).

The ECDF is then defined as

𝐹(𝑎) =
⎧{
⎨{⎩

0 for 𝑎 ∈ ( − ∞, 𝑌(1)),
𝑘
𝑛 for 𝑎 ∈ [𝑌(𝑘), 𝑌(𝑘+1)),
1 for 𝑎 ∈ [𝑌(𝑛), ∞).

The ECDF is always a step function with steps becoming arbitrarily small for continuous
distributions as 𝑛 increases. The ECDF is a consistent estimator for the CDF if the sample is
i.i.d. (Glivenko–Cantelli theorem):

sup
𝑎∈ℝ

|𝐹 (𝑎) − 𝐹(𝑎)|
𝑝

→ 0 as 𝑛 → ∞.

data(penguins, package="palmerpenguins")
plot(ecdf(penguins$bill_length_mm))

Have a look at the ECDF’s of the variables wage, education, and female from the cps data.
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2.3 Sample quantiles

Median

The median is a central value that splits the distribution into two equal parts.

For a continuous distribution, the population median is the value 𝑚𝑒𝑑 such that 𝐹(𝑚𝑒𝑑) = 0.5.
In discrete distributions, if 𝐹 is flat where it takes the value 0.5, the median isn’t uniquely
defined as any value within this flat region could technically satisfy the median condition
𝐹(𝑚𝑒𝑑) = 0.5.

The empirical median of a sorted dataset is found at the point where the ECDF reaches 0.5.
For an even-sized dataset, the median is the average of the two central observations:

𝑚𝑒𝑑 = {𝑌( 𝑛+1
2 ) if 𝑛 is odd

1
2(𝑌( 𝑛

2 ) + 𝑌( 𝑛
2 +1)) if 𝑛 is even

The median corresponds to the 0.5-quantile of the distribution.

Quantile

The population 𝑝-quantile is the value 𝑞𝑝 such that 𝐹(𝑞𝑝) = 𝑝. Similarly to the population
median, population quantiles may not be unique for discrete distributions.
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The emirical 𝑝-quantile ̂𝑞𝑝 is a value at which 𝑝 percent of the data falls below it. It can be
computed as the linear interpolation at ℎ = (𝑛 − 1)𝑝 + 1 between 𝑌(⌊ℎ⌋) and 𝑌(⌈ℎ⌉):

̂𝑞𝑝 = 𝑌(⌊ℎ⌋) + (ℎ − ⌊ℎ⌋)(𝑌(⌈ℎ⌉) − 𝑌(⌊ℎ⌋)).

This interpolation scheme is standard in R, although multiple approaches exist for estimating
quantiles (see here).

Boxplot

Boxplots graphically represent the empirical distribution.

The box indicates the interquartile range (𝐼𝑄𝑅 = ̂𝑞0.75 − ̂𝑞0.25) and the median of the dataset.
The upper whisker indicates the largest observation that does not exceed ̂𝑞0.75 + 1.5𝐼𝑄𝑅, and
the lower whisker is the smallest observation that is greater or equal to ̂𝑞0.25 − 1.5𝐼𝑄𝑅. The
points beyond the 1.5𝐼𝑄𝑅 distance are plotted as single points and indicate potential outliers
or the presence of a skewed or heavy tailed distribution.

Boxplots are helpful for comparing distributions across groups, such as differences in body
mass or bill length among penguin species, or wage distributions by gender:

par(mfrow = c(1,2), cex=0.9)
boxplot(body_mass_g ~ species, data = penguins)
boxplot(bill_length_mm ~ species, data = penguins)
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boxplot(wage ~ female, data = cps)
boxplot(education ~ female, data = cps)
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2.4 Density estimation

A continuous random variable 𝑌 is characterized by a continuously differentiable CDF 𝐹(𝑎) =
𝑃(𝑌 ≤ 𝑎). The derivative is known as the probability density function (PDF), defined as
𝑓(𝑎) = 𝐹 ′(𝑎). A simple method to estimate 𝑓 is through the construction of a histogram.

Histogram

A histogram divides the data range into 𝐵 bins each of equal width ℎ and counts the number
of observations 𝑛𝑗 within each bin. The histogram estimator of 𝑓(𝑎) for 𝑎 in the 𝑗-th bin is

̂𝑓(𝑎) = 𝑛𝑗
𝑛ℎ.

The histogram is the plot of these heights, displayed as rectangles, with their area normalized
so that the total area equals 1. The appearance and accuracy of a histogram depend on the
choice of bin width ℎ.

Let’s consider the subset of the CPS dataset of Asian women, excluding those with wages over
$80 for illustrative purposes:
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library(tidyverse)
cps.new = cps |> filter(asian == 1, female == 1, wage < 80)
wage = cps.new$wage
par(mfrow = c(1,3))
hist(wage, breaks = seq(0,80,by=20), probability = TRUE, main = "h=20")
hist(wage, breaks = seq(0,80,by=10), probability = TRUE, main = "h=10")
hist(wage, breaks = seq(0,80,by=1), probability = TRUE, main = "h=1")
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Running hist(wage, probability=TRUE) automatically selects a suitable bin width.
hist(wage)$breaks shows the automatically selected break poins, where the bin width is the
distance between break points.

Kernel density estimator

Suppose we want to estimate the wage density at 𝑎 = 22 and consider the histogram density
estimate in the figure above with ℎ = 10. It is based on the frequency of observations in the
interval [20, 30) which is a skewed window about 𝑎 = 22.

It seems more sensible to center the window at 22, for example [17, 27) instead of [20, 30). It
also seems sensible to give more weight to observations close to 22 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of 𝑓(𝑎), which is a smooth version of the
histogram:

̂𝑓(𝑎) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑋𝑖 − 𝑎
ℎ ).
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Here, 𝐾(𝑢) represents a weighting function known as a kernel function, and ℎ > 0 is the
bandwidth. A common choice for 𝐾(𝑢) is the Gaussian kernel:

𝐾(𝑢) = 𝜙(𝑢) = 1√
2𝜋 exp(−𝑢2/2).
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The density() function in R automatically selects an optimal bandwidth, but it also allows
for manual bandwidth specification via density(wage, bw = your_bandwidth).

2.5 Sample covariance

Consider a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 represented as an 𝑛 × 𝑘 data matrix
𝑋𝑋𝑋 = (𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛)′. For example, the following subset of the penguins dataset:

peng = penguins |>
select(bill_length_mm, flipper_length_mm, body_mass_g) |>
na.omit()

Sample mean vector

The sample mean vector 𝑋𝑋𝑋 is defined as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖.
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It is a consistent estimator for the population mean vector 𝐸[𝑋𝑋𝑋𝑖] if the sample is i.i.d..

colMeans(peng)

bill_length_mm flipper_length_mm body_mass_g
43.92193 200.91520 4201.75439

Sample covariance matrix

The adjusted sample covariance matrix Σ̂ΣΣ is defined as the 𝑘 × 𝑘 matrix

Σ̂ΣΣ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′,

where its (ℎ, 𝑙) element is the pairwise sample covariance of variable ℎ and 𝑙 given by

𝑠ℎ,𝑙 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙), 𝑋𝑋𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

If the sample is i.i.d., Σ̂ΣΣ is an unbiased and consistent estimator for the population covariance
matrix 𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′].

cov(peng)

bill_length_mm flipper_length_mm body_mass_g
bill_length_mm 29.80705 50.37577 2605.592
flipper_length_mm 50.37577 197.73179 9824.416
body_mass_g 2605.59191 9824.41606 643131.077

Sample correlation matrix

The correlation matrix is the matrix containing the pairwise sample correlation coeffi-
cients

𝑟ℎ,𝑙 = ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋𝑋𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑋𝑋𝑙)2
.

cor(peng)
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bill_length_mm flipper_length_mm body_mass_g
bill_length_mm 1.0000000 0.6561813 0.5951098
flipper_length_mm 0.6561813 1.0000000 0.8712018
body_mass_g 0.5951098 0.8712018 1.0000000

Both the covariance and correlation matrices are symmetric The scatterplots of the full dataset
visualize the positive correlations between the variables in the penguins data:

plot(peng)
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2.6 R-codes

methods-sec02.R
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Part II

B) Linear Regression
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3 Least Squares

3.1 Regression function

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also known
the regressand or response variable) as a function of the 𝑘-variate vector of the independent
variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship is formulated
as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a corresponding dataset
for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. To avoid
the unrealistic constraint of the regression line passing through the origin, a constant term
(intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining continuous and categor-
ical variables), and logarithmic transformations.
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3.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

�̂�𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

3.3 Regression plots

Let’s examine the linear relationship between a penguin’s body mass and its flipper length:

data(penguins, package="palmerpenguins")
fit1 = lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)
coefficients(fit1)

(Intercept) flipper_length_mm
-5780.83136 49.68557

The fitted regression line is
−5781 + 49.69 flipperlength.

We can plot the regression line over a scatter plot of the data:
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par(mfrow = c(1,2), cex=0.8)
plot(penguins$flipper_length_mm, penguins$body_mass_g)
abline(fit1, col="blue")
plot(fit1$model$flipper_length_mm, residuals(fit1))
abline(0,0,col="blue")
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Let’s include bill depth as an additional regressor:

fit2= lm(formula = body_mass_g ~ flipper_length_mm + bill_depth_mm,
data = penguins)

coefficients(fit2)

(Intercept) flipper_length_mm bill_depth_mm
-6541.90750 51.54144 22.63414

A 3D plot provides a visual representation of the resulting regression line (surface):

library(scatterplot3d) # package for 3d plots
Y = penguins$body_mass_g
X_2 = penguins$flipper_length_mm
X_3 = penguins$bill_depth_mm
plot3d <- scatterplot3d(x = penguins$flipper_length_mm,

y = penguins$bill_depth_mm,
z = penguins$body_mass_g,
angle = 60, scale.y = 0.8, pch = 16,
color ="red", xlab = "flipper_length_mm",
ylab = "bill_depth_mm",
main ="OLS Regression Surface")

plot3d$plane3d(fit2, lty.box = "solid", col=gray(.5), draw_polygon=TRUE)
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OLS Regression Surface
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Adding the additional predictor bill length gives a model with dimensions beyond visual rep-
resentation:

fit3 = lm(body_mass_g ~ flipper_length_mm + bill_depth_mm + bill_length_mm,
data = penguins)

coefficients(fit3)

(Intercept) flipper_length_mm bill_depth_mm bill_length_mm
-6424.76470 50.26922 20.04953 4.16182

The fitted regression line now includes three predictors and four coefficients:

−6425 + 50.27 flipperlength + 20.05 billdepth + 4.16 billlength

For models with multiple regressors, fitted values and residuals can still be visualized:

par(mfrow = c(1,2), cex=0.8)
plot(fitted.values(fit3))
plot(residuals(fit3))

The pattern of fitted values arises because the observations are sorted by penguin species.
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3.4 Matrix notation

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .

The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

�̂�1
⋮

�̂�𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 .
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The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

A large ℎ𝑖𝑖 occurs when the observation 𝑖 has a big influence on the regression line, e.g., the
last observation in the following dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")

0 100 200 300 400 500

20
00

60
00

10
00

0

OLS regression line with and without last observation

X

Y

hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646
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3.5 R-squared

The residuals satisfy 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 = 000 and 𝑌𝑌𝑌
′

̂𝑢𝑢𝑢 = 0. The intercept in the regression model ensures
∑𝑛

𝑖=1 �̂�𝑖 = 0 and ∑𝑛
𝑖=1 𝑌𝑖 = ∑𝑛

𝑖=1 𝑌𝑖.

Therefore, the sample variances have the following representations:

Dependent variable �̂�2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

Fitted values �̂�2
𝑌 = 1

𝑛 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

Residuals �̂�2
�̂� = 1

𝑛 ∑𝑛
𝑖=1 �̂�2

𝑖
Analysis of variance formula �̂�2

𝑌 = �̂�2
𝑌 + �̂�2

�̂�

The larger the proportion of the explained sample variance, the better the fit of the OLS
regression. This motivates the definition of the R-squared coefficient:

𝑅2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − ∑𝑛

𝑖=1 �̂�2
𝑖

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 .

The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . Equivalently,
it can be expressed as: 𝑅2 = �̂�2

𝑌 /�̂�2
𝑌 or 𝑅2 = 1 − �̂�2

�̂�/�̂�2
𝑌 . We have 0 ≤ 𝑅2 ≤ 1.

In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.

We lose 𝑘 degrees of freedom in the OLS regression since we have 𝑘 regressors (𝑘 linear re-
strictions). Similar to the adjusted sample variance of 𝑌 , 𝑠2

𝑌 = 1
𝑛−1 ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2, where
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we adjust for the fact that we lose 1 degree of freedom due to the sample mean (one linear
restriction), the adjusted sample variance of the residuals is

𝑠2
�̂� = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

�̂�2
𝑖 .

By incorporating adjusted versions in the R-squared definition, we penalize regression specifi-
cations with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 �̂�2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − 𝑠2

�̂�
𝑠2

𝑌
.

The squareroot of the adjusted sample variance of the residuals is called the standard error
of the regression (SER) or residual standard error:

𝑆𝐸𝑅 ∶= 𝑠�̂� = √ 1
𝑛 − 𝑘

𝑛
∑
𝑖=1

�̂�2
𝑖 .

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

The commands summary(fit)$r.squared and summary(fit)$adj.r.squared return the
R-squared and adjusted R-squared values, respectively. The 𝑆𝐸𝑅 can be returned by
summary(fit)$sigma.

The stargazer() function can be used to produce nice regression outputs:

library(stargazer)

stargazer(fit1, fit2, fit3, type="latex", report="vc*", omit.stat = "f",
star.cutoffs = NA, df=FALSE, omit.table.layout = "n",
digits = 4, header = FALSE)

3.6 Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.

43



Table 3.2

Dependent variable:
body_mass_g

(1) (2) (3)
flipper_length_mm 49.6856 51.5414 50.2692

bill_depth_mm 22.6341 20.0495

bill_length_mm 4.1618

Constant −5,780.8310 −6,541.9080 −6,424.7650

Observations 342 342 342
R2 0.7590 0.7610 0.7615
Adjusted R2 0.7583 0.7596 0.7594
Residual Std. Error 394.2782 393.1784 393.4048

par(mfrow=c(1,2))
## k=n=2
Y = c(0.7,-1.0)
X = c(1.9,0.8)
fit1 = lm(Y~X)
plot(X,Y, main="OLS with k=n=2")
abline(fit1)
## k=n=3
# Some given data
Y = c(0.7,-1.0,-0.2)
X_2 = c(1.9,0.8,1.25)
X_3 = c(66, 62, 59)
fit2 = lm(Y ~ X_2 + X_3)
plot3d <- scatterplot3d(x = X_2, y = X_3, z = Y,

angle = 33, scale.y = 0.8, pch = 16,
color ="red",
xlab = "X_2",
ylab = "X_3",
main ="OLS with k=n=3")

plot3d$plane3d(fit2, lty.box = "solid", col=gray(.5), draw_polygon=TRUE)
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If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line, but the problem of a perfect
fit is still present. If 𝑘 > 𝑛, there exists no OLS solution because 𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible.
Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional regressions.

3.7 Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.

Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).

Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

Multicollinearity means that at least one regressor is redundant and can be dropped.
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3.8 Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
add a dummy for each penguin species:

library(fastDummies)
penguins.new = dummy_cols(penguins,select_columns = "species")
fit4 = lm(body_mass_g ~ flipper_length_mm + species_Chinstrap

+ species_Gentoo + species_Adelie, data=penguins.new)
coefficients(fit4)

(Intercept) flipper_length_mm species_Chinstrap species_Gentoo
-4031.4769 40.7054 -206.5101 266.8096

species_Adelie
NA

Here, the dummy variables for penguin species are collinear with the intercept variable because
𝐷𝑐ℎ𝑖𝑛𝑠𝑡𝑟𝑎𝑝 + 𝐷𝑔𝑒𝑛𝑡𝑜𝑜 + 𝐷𝑎𝑑𝑒𝑙𝑖𝑒 = 1, leading to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋. The dummy variable
𝐷𝑎𝑑𝑒𝑙𝑖𝑒 is redundant because its value can always be recovered from 𝐷𝑔𝑒𝑛𝑡𝑜𝑜 and 𝐷𝑐ℎ𝑖𝑛𝑠𝑡𝑟𝑎𝑝.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Note that the coefficient for species Adelie is NA.

Alternatively, we can incorporate the factor variable species directly in the regression formula
as lm() automatically generates the correct amount of dummy variables:

fit5 = lm(body_mass_g ~ flipper_length_mm + species, data=penguins)
coefficients(fit5)

(Intercept) flipper_length_mm speciesChinstrap speciesGentoo
-4031.4769 40.7054 -206.5101 266.8096

3.9 R-codes

methods-sec03.R
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4 The Linear Model

The previous section discussed OLS regression from a descriptive perspective. A regression
model puts the regression problem into a stochastic framework.

Let {(𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛} be a sample from some joint population distribution, where 𝑌𝑖 is

individual 𝑖’s dependent variable, and 𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′ is the 𝑘 × 1 vector of individual
𝑖’s regressor variables.

Linear Regression Model

The linear regression model equation for individual 𝑖 = 1, … , 𝑛 is

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝑢𝑖

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖 is the error
term for individual 𝑖. In vector notation, we write

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛. (4.1)

The error term represents further factors that affect the dependent variable and are not in-
cluded in the model. These factors include measurement error, omitted variables, or unob-
served/unmeasured variables.

The expression 𝑚(𝑋𝑋𝑋𝑖) = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 is called the population regression function.

We can use matrix notation to describe the 𝑛 individual regression equations together. Con-
sider the 𝑛 × 1 dependent variable vector 𝑌𝑌𝑌 , the 𝑛 × 𝑘 regressor matrix 𝑋𝑋𝑋, and the vectors of
coefficients and error terms given by

𝛽𝛽𝛽
(𝑘×1)

= ⎛⎜
⎝

𝛽1
⋮

𝛽𝑘

⎞⎟
⎠

, 𝑢𝑢𝑢
(𝑛×1)

= ⎛⎜
⎝

𝑢1
⋮

𝑢𝑛

⎞⎟
⎠

.

The 𝑛 equations of Equation 4.1 can be written together as

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.
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4.1 Assumptions

We assume that (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, satisfies Equation 4.1 with

• (A1) conditional mean independence: 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0
• (A2) random sampling: (𝑌𝑖,𝑋𝑋𝑋′

𝑖) are i.i.d. draws from their joint population distribu-
tion

• (A3) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖 ] < ∞, 0 < 𝐸[𝑋4

𝑖𝑙] < ∞ for all 𝑙 = 1, … , 𝑘
• (A4) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank

• optional: (A5) homoskedasticity: 𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝜎2

• optional: (A6) normal errors: 𝑢𝑖|𝑋𝑋𝑋𝑖 is normally distributed

Assumptions (A1)–(A4) are required and (A5) and (A6) are optional. Model (A1)–(A4) is
called heteroskedastic linear regression model, model (A1)–(A5) is called homoskedas-
tic linear regression model, and model (A1)–(A6) is called normal linear regression
model.

(A1)–(A2) define the properties of the regression model, (A3)–(A4) imply that OLS can be
used to estimate the model, and (A5)–(A6) ensure that classical exact inference can be used
without relying on robust large sample methods.

For all 𝑖, 𝑗 = 1, … , 𝑛, the model has the following properties:

(i) Conditional expectation: (A1) implies

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝑚(𝑋𝑋𝑋𝑖).

(ii) Weak exogeneity: (A1) implies

𝐸[𝑢𝑖] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖𝑙) = 0.

(iii) Strict exogeneity: (A1)+(A2) imply

𝐸[𝑢𝑖|𝑋𝑋𝑋] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑗𝑙) = 0.

(iv) Heteroskedasticity: (A1)+(A2) imply

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢2
𝑖 |𝑋𝑋𝑋𝑖] =∶ 𝜎2

𝑖
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(v) No autocorrelation: (A1)+(A2) imply

𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋] = 0, 𝐶𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0, 𝑖 ≠ 𝑗.
The errors have a diagonal conditional covariance matrix:

𝐷𝐷𝐷 ∶= 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

4.2 OLS Estimator

The OLS coefficient vector ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 can be used to estimate 𝛽𝛽𝛽. For all 𝑖 = 1, … , 𝑛
and 𝑙 = 1, … , 𝐾, the OLS estimator has the following properties:

(i) Existence: (A4) implies that 𝑋𝑋𝑋′𝑋𝑋𝑋 is invertible and that ̂𝛽𝛽𝛽 exists.

(ii) Unbiasedness: (A1)+(A2)+(A4) imply

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽.

(iii) Sampling variance: (A1)+(A2)+(A4) imply

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

If (A5) holds as well, then 𝐷𝐷𝐷 = 𝐼𝐼𝐼𝑛 and 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

(iv) Normality: (A1)+(A2)+(A4)+(A6) imply

̂𝛽𝛽𝛽|𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽, 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋])

(v) Consistency: (A1)–(A4) imply

̂𝛽𝛽𝛽
𝑝

→ 𝛽𝛽𝛽 as 𝑛 → ∞
since the bias is zero and the variance asymptotically tends to zero.

(vi) Asymptotic variance: Let 𝑄𝑄𝑄 ∶= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and ΩΩΩ ∶= 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]. (A1)–(A4) imply

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 1
𝑛⏟

→0

( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1

( 1
𝑛𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋⏟

𝑝
→ΩΩΩ

)( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1 𝑝

→ 000,

and
𝑉 𝑎𝑟[√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]

𝑝
→ 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.

If (A5) holds as well, then ΩΩΩ = 𝜎2𝑄𝑄𝑄, and 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1 = 𝜎2𝑄𝑄𝑄−1.
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(vii) Asymptotic normality: (A1)–(A4) imply

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝐷→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

Technical details can be found in Appendix A.

4.3 Marginal Effects

For example, consider the regression model of hourly wage on education (years of schooling):

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2 𝑒𝑑𝑢𝑖 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖] = 0, 𝑖 = 1, … , 𝑛. (4.2)

The population regression function is 𝑚(𝑒𝑑𝑢𝑖) = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖. (A1) implies that

𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖⏟⏟⏟⏟⏟
=𝑚(𝑒𝑑𝑢𝑖)

+ 𝐸[𝑢𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟
=0

.

The average wage level of all individuals with 𝑧 years of schooling is 𝛽1 + 𝛽2𝑧.

𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) = 𝐶𝑜𝑣(𝑚(𝑒𝑑𝑢𝑖), 𝑒𝑑𝑢𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝛽2𝑉 𝑎𝑟[𝑒𝑑𝑢𝑖]

+ 𝐶𝑜𝑣(𝑢𝑖, 𝑒𝑑𝑢𝑖)⏟⏟⏟⏟⏟
=0

The coefficient 𝛽2 is identified as

𝛽2 = 𝐶𝑜𝑣(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖)
𝑉 𝑎𝑟[𝑒𝑑𝑢𝑖]

= 𝐶𝑜𝑟𝑟(𝑤𝑎𝑔𝑒𝑖, 𝑒𝑑𝑢𝑖) ⋅ 𝑠𝑑(𝑤𝑎𝑔𝑒𝑖)
𝑠𝑑(𝑒𝑑𝑢𝑖)

.

The coefficient describes the correlative relationship between education and wages.

The marginal effect of education is

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝜕𝑒𝑑𝑢𝑖

= 𝛽2.

lm(wage ~ education, data = cps)

Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898
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Interpretation: People with one more year of education are paid on average 2.90 USD more
than people with one year less of education.

The marginal effect is a correlative effect and does not say where exactly a higher wage level
for people with more education comes from. Regression relationships do not necessarily
imply a causal relationship.

People with more education may earn more for a number of reasons. Maybe they are generally
smarter or come from wealthier families, which leads to better paying jobs. Or maybe more
education actually leads to higher earning

Figure 4.1: A DAG (directed acyclic graph) for the correlative and causal effects of edu on
wage

The coefficient 𝛽2 is a measure of how strongly education and earnings are correlated.

This association could be due to other factors that correlate with both wages and education,
such as family background (parental education, family income, ethnicity, structural racism) or
personal background (gender, intelligence).

Notice: Correlation does not imply causation!

To disentangle the causal effect of education on wages from other correlative effects, we can
include control variables.
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4.4 Control Variables

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) it is correlated with the dependent variable (wage, in this scenario),
(ii) correlated with the regressor of interest (education),
(iii) omitted in the regression.

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 𝛽2 in Equation 4.2 measures the correlative or marginal effect, not the causal
effect. This must always be kept in mind when interpreting regression coefficients.

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as racial background and gender dummy
variables for Black and female:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑒𝑥𝑖 + 𝛽4𝐵𝑙𝑎𝑐𝑘𝑖 + 𝛽5𝑓𝑒𝑚𝑖 + 𝑢𝑖.

In this case,
𝛽2 = 𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑒𝑥𝑖, 𝐵𝑙𝑎𝑐𝑘𝑖, 𝑓𝑒𝑚𝑖]

𝜕𝑒𝑑𝑢𝑖
is the marginal effect of education on expected wages, holding experience, race, and gender
fixed.

lm(wage ~ education + experience + black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + black + female,

data = cps)

Coefficients:
(Intercept) education experience black female

-21.7095 3.1350 0.2443 -2.8554 -7.4363
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Interpretation: Given the same experience, racial background, and gender, people with one
more year of education are paid on average 3.14 USD more than people with one year less of
education.

Note: It does not hold other unobservable characteristics (such as ability) or variables not
included in the regression (such as quality of education) fixed, so an omitted variable bias may
still be present.

Good control variables are variables that are determined before the level of education is deter-
mined. Control variables should not be the cause of the dependent variable of interest.

Examples of good controls for education are parental education level, region of residence, or
educational industry/field of study.

A problematic situation is when the control variable is the cause of education. Bad controls
are typically highly correlated with the independent variable of interest and irrelevant to the
causal effect of that variable on the dependent variable.

Examples of bad controls for education are current job position, number of professional
certifications obtained, or number of job offers.

A high correlation of the bad control with the variable education also causes a high variance of
the OLS coefficient for education and leads to an imprecise coefficient estimate. This problem
is called imperfect multicollinearity.

Bad controls make it difficult to interpret causal relationships. They may control away the
effect you want to measure, or they may introduce additional reverse causal effects hidden in
the regression coefficients.

4.5 Polynomials

A linear dependence on wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑥𝑖 + 𝛽3𝑒𝑥2
𝑖 + 𝛽4𝑒𝑥3

𝑖 + 𝑢𝑖.

## we focus on Asian people only for illustration
cps.as = cps |> subset(asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
coefficients(fit)

53



(Intercept) experience I(experience^2) I(experience^3)
20.4547146896 1.2013241316 -0.0446897909 0.0003937551

plot(wage ~ experience, data = cps.as, ylim = c(0,100))
lines(sort(cps.as$experience),

fitted(fit)[order(cps.as$experience)],
col='red', type='l', lwd=3)
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The marginal effect depends on the years of experience:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑥𝑖]
𝜕𝑒𝑥𝑖

= 𝛽2 + 2𝛽3𝑒𝑥𝑖 + 3𝛽4𝑒𝑥𝑝2
𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.43 + 2 ⋅ (−0.042) ⋅ 10 + 3 ⋅ 0.0003 ⋅ 102 = 0.68.

4.6 Interactions

A linear regression with interaction terms:

𝑤𝑎𝑔𝑒𝑖 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝛽3𝑓𝑒𝑚𝑖 + 𝛽4𝑚𝑎𝑟𝑟𝑖 + 𝛽5(𝑚𝑎𝑟𝑟𝑖 ⋅ 𝑓𝑒𝑚𝑖) + 𝑢𝑖
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lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-17.886 2.867 -3.266 7.167 -5.767

The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑓𝑒𝑚𝑎𝑙𝑒𝑖

= 𝛽3 + 𝛽5𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

Interpretation: Given the same education, unmarried women are paid on average 3.26 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒𝑖, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖]
𝜕𝑚𝑎𝑟𝑟𝑖𝑒𝑑𝑖

= 𝛽4 + 𝛽5𝑓𝑒𝑚𝑎𝑙𝑒𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

4.7 Logarithms

In the logarithmic specification

log(𝑤𝑎𝑔𝑒𝑖) = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑖 + 𝑢𝑖

we have
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]

𝜕𝑒𝑑𝑢𝑖
= 𝛽2.

This implies
𝜕𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

absolute
change

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.
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That is, 𝛽2 gives the average absolute change in log wages when education changes by 1.

Another interpretation can be given in terms of relative changes. Consider the following
approximation:

𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖] ≈ exp(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but the difference is small unless the data is highly skewed.

The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is

𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])
𝜕𝑒𝑑𝑢𝑖

= 𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get

𝜕𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]
𝐸[𝑤𝑎𝑔𝑒𝑖|𝑒𝑑𝑢𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])
𝑒𝑥𝑝(𝐸[log(𝑤𝑎𝑔𝑒𝑖)|𝑒𝑑𝑢𝑖])

= 𝛽2 ⋅ 𝜕𝑒𝑑𝑢𝑖⏟
absolute
change

.

linear_model <- lm(wage ~ education, data = cps.as)
log_model <- lm(log(wage) ~ education, data = cps.as)
log_model

Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")

Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-linear and log-linear specifications, we also have the linear-log speci-
fication

𝑌 = 𝛽1 + 𝛽2 log(𝑋) + 𝑢
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and the log-log specification

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Linear-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 0.01𝛽2 higher 𝑌 .

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

4.8 R-codes

methods-sec04.R
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5 Regression Inference

library(tidyverse)
library(kableExtra)
library(sandwich)
library(lmtest)

5.1 Standardized coefficients

The 𝑗-th OLS coefficient has the conditional standard deviation

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

Note that [𝐴𝐴𝐴]𝑗𝑗 indicates the 𝑗-th diagonal element of the matrix 𝐴𝐴𝐴.

Under the homoskedasticity assumption (A5), the standard deviation simplifies to

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) = √𝜎2[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

The coefficient is unbiased with 𝐸[ ̂𝛽𝑗|𝑋𝑋𝑋] = 𝛽𝑗 and has the standardized representation

𝑍𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
.

Under (A1)–(A4),
√𝑛( ̂𝛽𝑗 − 𝛽𝑗) converges to a normal distribution, and therefore

𝑍𝑗
𝐷→ 𝒩(0, 1) as 𝑛 → ∞.

A direct consequence is that

lim
𝑛→∞

𝑃 ( ̂𝛽𝑗 − 𝑧(1− 𝛼
2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 + 𝑧(1− 𝛼

2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)) = 1 − 𝛼,

where 𝑧(𝑝) is the 𝑝-quantile of the standard normal distribution. Thus, ̂𝛽𝑗 ± 𝑧(1− 𝛼
2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

defines an asymptotic 1 − 𝛼 confidence interval for 𝛽𝑗.
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Under the normality assumption (A6), the OLS estimator ̂𝛽𝑗 is normal conditional on 𝑋𝑋𝑋, which
implies that 𝑍𝑗 ∼ 𝒩(0, 1) for any fixed sample size 𝑛. In this case, ̂𝛽𝑗 ± 𝑧(1− 𝛼

2 )𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) is an
exact confidence interval for 𝛽𝑗.

Note that 𝐷𝐷𝐷 is unknown and 𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋) is not computable in practice, so the confidence interval
is not feasible.

5.2 Standard Errors

A standard error 𝑠𝑒( ̂𝛽𝑗) for an estimator ̂𝛽𝑗 is an estimator of the standard deviation of the
distribution of ̂𝛽𝑗.

We say that the standard error is consistent if

𝑠𝑒( ̂𝛽𝑗)
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

𝑝
→ 1.

This property ensures that, in practice, we can replace the unknown standard deviation with
the standard error to apply inferential methods such as confidence intervals and t-tests.

To estimate the unknown standard deviation of the OLS estimator, the diagonal matrix 𝐷𝐷𝐷 =
𝑑𝑖𝑎𝑔(𝜎2

1, … , 𝜎2
𝑛) is replaced by some sample counterpart 𝐷𝐷𝐷 = 𝑑𝑖𝑎𝑔(�̂�2

1, … , �̂�2
𝑛).

5.2.1 Robust standard errors

Various heteroskedasticity-consistent (HC) standard errors have been proposed in the
literature:

HC type weights
HC0 �̂�2

𝑖 = �̂�2
𝑖

HC1 �̂�2
𝑖 = 𝑛

𝑛−𝑘 �̂�2
𝑖

HC2 �̂�2
𝑖 = �̂�2

𝑖
1−ℎ𝑖𝑖

HC3 �̂�2
𝑖 = �̂�2

𝑖
(1−ℎ𝑖𝑖)2

HC0 replaces the unknown variances with squared residuals, and HC1 is a bias-corrected
version of HC0. HC2 and HC3 use the leverage values ℎ𝑖𝑖 (the diagonal entries of the influence
matrix 𝑃𝑃𝑃 ) and give less weight to influential observations.
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HC1 and HC3 are the most common choices and can be written as

𝑠𝑒ℎ𝑐1( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1( 𝑛
𝑛 − 𝑘

𝑛
∑
𝑖=1

�̂�2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]
𝑗𝑗

,

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

�̂�2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]

𝑗𝑗
.

All versions perform similarly well in large samples, but HC3 performs best in small samples
and is the preferred choice.

HC standard errors are also known as heteroskedasticity-robust standard errors or sim-
ply robust standard errors.

Estimators for the full covariance matrix of ̂𝛽𝛽𝛽 have the form

𝑉𝑉𝑉 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The HC3 covariance estimator can be written as

𝑉𝑉𝑉 ℎ𝑐3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(
𝑛

∑
𝑖=1

�̂�2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

5.2.2 Classical standard errors

Classical standard errors put equal weights on all observations:

�̂�2
𝑖 = 𝑠2

�̂� = 1
𝑛 − 𝑘

𝑛
∑
𝑗=1

�̂�2
𝑗 .

This implies 𝐷𝐷𝐷 = 𝑠2
�̂�𝐼𝐼𝐼𝑛 and 𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 = 𝑠2

�̂�𝑋𝑋𝑋′𝑋𝑋𝑋. Therefore, the classical covariance matrix
estimator reduces to

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
�̂�(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

The classical standard errors are

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) = √𝑠2
�̂�[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1]𝑗𝑗.

Classical standard errors are only valid under (A5) and are also known as constant variance
standard errors or homoskedasticity-only standard errors. Classical standard errors
should only be used if there are very good reasons for the error terms to be homoskedastic.
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5.2.3 Standard Errors in R

The covariance matrix estimates can be computed using the vcovHC() function from the
sandwich package. HC3 is the default version. The standard errors are the square roots of
their diagonal entries.

fit = lm(wage ~ education + experience + black + female, data = cps)
hom = sqrt(diag(vcovHC(fit, "const")))
HC1 = sqrt(diag(vcovHC(fit, "HC1")))
HC3 = sqrt(diag(vcovHC(fit)))
tibble("Variable" = names(coefficients(fit)), hom, HC1, HC3) |>
mutate_if(is.numeric, round, digits = 4) |>
kbl(align = 'c')

Variable hom HC1 HC3
(Intercept) 0.4910 0.5666 0.5667
education 0.0305 0.0408 0.0409
experience 0.0072 0.0067 0.0067

black 0.2684 0.2243 0.2243
female 0.1670 0.1603 0.1604

5.3 Interval estimates

5.3.1 Asymptotic Intervals

A confidence interval 𝐼1−𝛼 for 𝛽𝑗 with coverage probability 1−𝛼 is asymptotically valid if

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.

Under (A1)–(A4), we can use

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑧(1− 𝛼
2 )𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑧(1− 𝛼

2 )𝑠𝑒ℎ𝑐( ̂𝛽𝑗)],

where 𝑠𝑒ℎ𝑐( ̂𝛽𝑗) is any HC-type standard error. 𝑧(𝑝) can be returned using qnorm(p).

In practice, t-quantiles are often used instead of z-quantiles:

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗)],

where 𝑡(𝑝,𝑚) is the 𝑝-quantile of the t-distribution with 𝑚 degrees of freedom. 𝑡(𝑝,𝑚) can be
returned using qt(p,m).
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Asymptotically, it makes no difference whether t- or z-quantiles are used. We have

𝑡(1− 𝛼
2 ,𝑛−𝑘) > 𝑧(1− 𝛼

2 )

for any fixed 𝑛, which makes the t-based confidence intervals a little wider (conservative), but
asymptotically they coincide because

lim
𝑛→∞

𝑡(1− 𝛼
2 ,𝑛−𝑘) = 𝑧(1− 𝛼

2 ).

You can use the coefci() function from the lmtest package. coefci(fit) calculates clas-
sical confidence intervals, coefci(fit, vcov. = vcovHC) uses HC3 standard errors, and
coefci(fit, vcov. = vcovHC, df=Inf) considers z-quantiles instead of t-quantiles.

coefci(fit, vcov. = vcovHC)

2.5 % 97.5 %
(Intercept) -22.8201704 -20.5988645
education 3.0549552 3.2151008
experience 0.2311859 0.2574641
black -3.2951083 -2.4157606
female -7.7505755 -7.1219793

You can use qt(p, df = nu) and qnorm(p) to get the t- and z-quantiles, where p is the
probability and nu is the degrees of freedom. The CDF values for the standard normal and
t-distributions can be calculated using pt() and pnorm().

5.3.2 Exact Intervals

An exact confidence interval 𝐼1−𝛼 for 𝛽𝑗 satisfies

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼

for any sample size 𝑛.

Exact confidence intervals for the regression coefficients are only available if the homoskedas-
ticity and normality assumptions (A5) and (A6) hold. In this case,

(𝑛 − 𝑘)𝑠2
�̂�

𝜎2 ∼ 𝜒2
𝑛−𝑘,

which implies that
𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)
𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)

∼ √𝜒2
𝑛−𝑘/(𝑛 − 𝑘).
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Replacing the true standard deviation with the classical standard error in the standardized
OLS coefficient 𝑍𝑗 yields

̂𝛽𝑗 − 𝛽𝑗
𝑠𝑒ℎ𝑜𝑚(𝛽𝑗)

= 𝑍𝑗

𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)/𝑠𝑑( ̂𝛽𝑗|𝑋𝑋𝑋)
∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘.

Therefore,

𝐼1−𝛼,ℎ𝑜𝑚 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗)]

is an exact confidence interval for 𝛽𝑗 under (A1)–(A6).

5.4 t-Tests

The t-statistic is the OLS estimator standardized with the standard error. Under (A1)–(A4)
we have

𝑇 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝐷→ 𝒩(0, 1).

This result can be used to test the hypothesis 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 . The t-statistic for this hypothesis

is

𝑇0 =
̂𝛽𝑗 − 𝛽0

𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
,

which satisfies 𝑇0 = 𝑇 𝐷→ 𝒩(0, 1) under 𝐻0.

The two-sided t-test for 𝐻0 against 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 is given by the test decision

do not reject 𝐻0 if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘),

reject 𝐻0 if |𝑇0| > 𝑡(1− 𝛼
2 ,𝑛−𝑘).

The value 𝑡(1− 𝛼
2 ,𝑛−𝑘) is called the critical value.

This test is asymptotically of size 𝛼:

lim
𝑛→∞

𝑃(we reject 𝐻0|𝐻0 is true) = 𝛼.

We can also use the critical value 𝑧(1− 𝛼
2 ) instead of 𝑡(1− 𝛼

2 ,𝑛−𝑘) to get an asymptotically valid
test of size 𝛼.

If (A5)–(A6) hold, and 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) is used instead of 𝑠𝑒ℎ𝑐( ̂𝛽𝑗), then the t-quantile based t-test
is of exact size 𝛼.
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p-values provide a quick alternative way to make the test decision. The t-test decision rule
is equivalent to

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼,

where
𝑝-value = 2(1 − 𝐹(|𝑇0|)),

and 𝐹 is the CDF of 𝑡𝑛−𝑘 or 𝒩(0, 1), depending on whether the t- or z-quantile critical values
are used.

The p-values can be calculated using 2*(1-pt(abs(T0),n-k)) and 2*(1-pnorm(abs(T0),n-k)),
where T0 is the t-statistic for 𝐻0.

coeftest(fit, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.7095175 0.5666566 -38.312 < 2.2e-16 ***
education 3.1350280 0.0408533 76.739 < 2.2e-16 ***
experience 0.2443250 0.0067036 36.447 < 2.2e-16 ***
black -2.8554345 0.2243222 -12.729 < 2.2e-16 ***
female -7.4362774 0.1603553 -46.374 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest() is another function from the lmtest package and works similarly to coefci().
You can specify different standard errors: coeftest(fit, vcov. = vcovHC, type = "HC1").
coeftest(fit) returns the t-test results for classical standard errors which is identical to the
output of the base-R command summary(fit).

To represent very small numbers where there are n zero digits before the first nonzero digit
after the decimal point, R uses scientific notation in the form e-n. For example, 2.2e-16
means 0.00000000000000022.

5.5 Joint Testing

When multiple hypotheses are to be tested, repeated t-tests will not yield valid inferences.

Each t-test has a probability of falsely rejecting 𝐻0 (type I error) of 𝛼, but if multiple t-tests
are used on different coefficients, then the probability of falsely rejecting at least once (joint
type I error probability) is greater than 𝛼 (multiple testing problem).
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5.5.1 Joint Hypotheses

Consider the general hypothesis
𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟,

where 𝑅𝑅𝑅 is a 𝑞 × 𝑘 matrix with rank(𝑅𝑅𝑅) = 𝑞 and 𝑟𝑟𝑟 is a 𝑞 × 1 vector.

Let’s look at a linear regression with 𝑘 = 3:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝑢𝑖

• Example 1: The hypothesis 𝐻0 ∶ (𝛽2 = 0 and 𝛽3 = 0) implies 𝑞 = 2 constraints and is
translated to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 0
0 0 1) , 𝑟𝑟𝑟 = (0

0) .

• Example 2: The hypothesis 𝐻0 ∶ 𝛽2 + 𝛽3 = 1 implies 𝑞 = 1 constraint and is translated
to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 1) , 𝑟𝑟𝑟 = (1) .

In practice, the most common multiple hypothesis tests are tests of whether multiple coeffi-
cients are equal to zero, which is a test of whether those regressors should be included in the
model.

5.5.2 Wald Test

The Wald distance is the vector 𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽−𝑟𝑟𝑟, and the Wald statistic is the squared standardized
Wald distance vector:

𝑊 = (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).
Under 𝐻0 we have

𝑊 𝐷→ 𝜒2
𝑞.

The test decision for the Wald test:

do not reject 𝐻0 if 𝑊 ≤ 𝜒2
(1−𝛼,𝑞),

reject 𝐻0 if 𝑊 > 𝜒2
(1−𝛼,𝑞),

where 𝜒2
(𝑝,𝑚) is the 𝑝-quantile of the chi-squared distribution with 𝑚 degrees of freedom. 𝜒2

(𝑝,𝑚)
can be returned using qchisq(p,m).
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5.5.3 F-Test

The 𝐹 statistic is the Wald statistic scaled by by the number of constraints:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator. 𝐹(𝑝,𝑚1,𝑚2) can be returned using
qf(p,m1,m2).

For single constraint (𝑞 = 1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 , the Wald test is equivalent

to a t-test using the z-quantile, and the F-test is equivalent to a t-test using the t-quantile.

The Wald and the F-test are asymptotically equivalent and have asymptotic sizes 𝛼 under
(A1)–(A4) when a HC version of the covariance matrix estimator V̂ is used. The 𝐹 test is
slightly more conservative for small samples.

In the special case of homoscedastic and normal errors (A5)–(A6), the 𝐹 test has exact size 𝛼
when 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, similar to the exact t-test.

5.5.4 Testing in R

In our regression from above, we can test whether the two coefficients for experience and
female are both zero. The waldtest() function from the lmtest package allows you to specify
the names of the variables directly.

waldtest(fit, c("experience", "female"), vcov = vcovHC)

Wald test

Model 1: wage ~ education + experience + black + female
Model 2: wage ~ education + black
Res.Df Df F Pr(>F)

1 50737
2 50739 -2 1490.9 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

66



waldtest(fit, c("experience", "female"), vcov = vcovHC, test = "Chisq")

Wald test

Model 1: wage ~ education + experience + black + female
Model 2: wage ~ education + black
Res.Df Df Chisq Pr(>Chisq)

1 50737
2 50739 -2 2981.8 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An alternative is to fit a nested model and apply the function to the fitted models. The
following command will produce the same output as above:

fit2 = lm(wage ~ education + black, data = cps)
waldtest(fit, fit2, vcov = vcovHC)

User-specified constraints of the general form 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 can be tested with the linearHypothesis()
function from the car package.

5.6 R-codes

methods-sec05.R
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6 Case Study I: Score Data

library(AER) # for the dataset
library(sandwich) # robust standard errors
library(lmtest) # robust inference
library(stargazer) # regression outputs
library(tidyverse) # data management

6.1 Data Set Description

The California School data set (CASchools) is included in the R package AER. This dataset
contains information on various characteristics of schools in California, such as test scores,
teacher salaries, and student demographics.

# load the the data set
data(CASchools)
# get an overview
summary(CASchools)

Upon examination we find that the dataset contains mostly numeric variables, but it lacks
two important ones we’re interested in: average test scores and student-teacher ratios.
However, we can calculate them using the available data.

To find the student-teacher ratio, we divide the total number of students by the number of
teachers. For the average test score, we just need to average the math and reading scores. In
the next code chunk, we’ll demonstrate how to create these variables as vectors and add them
to the CASchools dataset.

# compute student-teacher ratio and append it to CASchools
CASchools$STR <- CASchools$students/CASchools$teachers

# compute test score and append it to CASchools
CASchools$score <- (CASchools$read + CASchools$math)/2

If we ran summary(CASchools) again we would find the two variables of interest as additional
variables named STR and score.
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6.2 Linear Regression

Let’s suppose we were interested in the following regression model

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝑢
In this regression, we aim to explore how test scores (score) are influenced by student-teacher
ratio (STR) and the percentage of English learners (english). The variable english indicates
the proportion of students who may require additional support or resources to improve their
English language skills within each school.

We would run this model in R using the lm() function and explore the regression estimates
with coeftest().

# run the model
model <- lm(score ~ STR + english, data = CASchools)
# report estimates
coeftest(model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 8.812242 77.8499 < 2e-16 ***
STR -1.101296 0.437066 -2.5197 0.01212 *
english -0.649777 0.031297 -20.7617 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coeftest() function in R, along with suitable options such as vcov. = vcovHC for robust
standard errors, automatically includes statistics such as standard errors, 𝑡-statistics, and 𝑝-
values, which is exactly what we need to test hypotheses about single coefficients (𝛽𝑗) in
regression models.

We can also compute confidence intervals for individual coefficients in the multiple regression
model by using the function coefci(). This function computes confidence intervals at the
95% level by default.

# compute confidence intervals for all coefficients in the model
coefci(model, vcov. = vcovHC)
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2.5 % 97.5 %
(Intercept) 668.7102930 703.3541961
STR -1.9604231 -0.2421682
english -0.7112962 -0.5882574

To obtain confidence intervals at a different level, say 90%, we set the argument level in our
call of coefci() accordingly.

coefci(model, vcov. = vcovHC, level = 0.9)

5 % 95 %
(Intercept) 671.5051238 700.5593652
STR -1.8218062 -0.3807851
english -0.7013703 -0.5981834

The output above shows that zero is not an element of the confidence interval for the coefficient
on STR, so we can reject the null hypothesis at significance levels of 5% and 10% (Note that
rejection at the 5% level implies rejection at the 10% level anyway).

We can bring this conclusion further via the 𝑝-value for STR: 0.01 < 0.01212 < 0.05, which
indicates that this coefficient estimate is significant at the 5% level but not at the 1% level.

6.3 Bad Controls

Let’s suppose now that we are interested in investigating the average effect on test scores
of reducing the student-teacher ratio when the expenditures per pupil and the percentage of
english learning pupils are held constant.

Let us augment our model by an additional regressor expenditure, that is a measure for the
total expenditure per pupil in the district. For this model, we will include expenditure as
measured in thousands of dollars. Our new model would be

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝛽3 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 + 𝑢

Let us now estimate the model:

# scale expenditure to thousands of dollars
CASchools$expenditure <- CASchools$expenditure/1000

# estimate the model
model <- lm(score ~ STR + english + expenditure, data = CASchools)
coeftest(model, vcov. = vcovHC)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.577947 15.668623 41.4572 < 2e-16 ***
STR -0.286399 0.487513 -0.5875 0.55721
english -0.656023 0.032114 -20.4278 < 2e-16 ***
expenditure 3.867901 1.607407 2.4063 0.01655 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated impact of a one-unit change in the student-teacher ratio on test scores,
while holding expenditure and the proportion of English learners constant, is −0.29. It is
much smaller than the estimated coefficient in our initial model where we didn’t include
expenditure.

Additionally, this coefficient of STR is no longer statistically significant, even at a 10% signifi-
cance level, as indicated by a 𝑝-value of 0.56. This lack of significance for 𝛽1 may stem from a
larger standard error resulting from the inclusion of expenditure in the model, leading to less
precise estimation of the coefficient on 𝑆𝑇 𝑅. This scenario highlights the challenge of dealing
with strongly correlated predictors.

Note that expenditure can be classified as a bad control because higher expenditure per
pupil may be the cause of a decrease in the student-teacher ratio. By adding expenditure to
the regression we are controlling away our causal effect of STR on score.

The correlation between 𝑆𝑇 𝑅 and 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 can be determined using the cor() function.

# compute the sample correlation between 'STR' and 'expenditure'
cor(CASchools$STR, CASchools$expenditure)

[1] -0.6199822

This indicates a moderately strong negative correlation between the two variables.

The estimated model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 649.58
(15.67)

− 0.29
(0.49)

𝑆𝑇 𝑅 − 0.66
(0.03)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 3.87
(1.61)

𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒

Could we reject the hypothesis that both the 𝑆𝑇 𝑅 coefficient and the 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 coefficient
are zero? To answer this, we need to conduct joint hypothesis tests, which involve placing
restrictions on multiple regression coefficients. This differs from individual 𝑡-tests, where
restrictions are applied to a single coefficient.
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To test whether both coefficients are zero, we will conduct a heteroskedasticity-robust 𝐹 -test.
To do this in R, we can use the function waldtest() contained in the package lmtest.

waldtest(model, c("STR", "expenditure"), vcov = vcovHC)

Wald test

Model 1: score ~ STR + english + expenditure
Model 2: score ~ english
Res.Df Df F Pr(>F)

1 416
2 418 -2 5.2617 0.005537 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output reveals that the 𝐹 -statistic for this joint hypothesis test is 5.26 and the corre-
sponding 𝑝-value is about 0.0055. We can therefore reject the null hypothesis that both
coefficients are zero at the 1% level of significance. Notice that the individual t-tests for STR
and expenditure are insignificant at the 1% level.

6.4 Good Controls

In order to reduce the risk of omitted variable bias, it is essential to include control variables
in regression models. In our case, we are interested in estimating the causal effect of a change
in the student-teacher ratio on test scores.

By including english as control variable, we aimed to control for unobservable student charac-
teristics which correlate with the student-teacher ratio and are assumed to have an impact on
test score. Including expenditure was actually not a good idea because it is highly correlated
with STR (imperfect multicollinearity) and may be the cause of the student-teacher ratio (bad
control).

There are other interesting control variables to observe:

• lunch: the share of students that qualify for a subsidized or even a free lunch at school.

• calworks: the percentage of students that qualify for the CalWorks income assistance
program.

Students eligible for CalWorks live in families with a total income below the threshold for
the subsidized lunch program, so both variables are indicators for the share of economically
disadvantaged children. We suspect both indicators are highly correlated.
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# estimate the correlation between 'calworks' and 'lunch'
cor(CASchools$calworks, CASchools$lunch)

[1] 0.7394218

If they are highly correlated as we just confirmed, there is no standard way to proceed when
deciding which variable to use. It may not be a good idea to use both variables as regressors
in view of collinearity, but as long as we are only interested in the coefficient of STR we do
not care whether the coefficients of calworks and lunch have an imperfect multicollinearity
problem.

Let’s first explore further these control variables and how they correlate with the dependent
variable by plotting them against test scores.

correlations = round(cor(CASchools$score, CASchools |>
select(english, lunch, calworks)),2)

par(mfrow = c(1,3), pch = 20, col = "steelblue", bty="n")
plot(score ~ english, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[1]))
plot(score ~ lunch, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[2]))
plot(score ~ calworks, data = CASchools, xlim = c(0, 100),

main = paste("cor =",correlations[3]))
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We shall consider five different model equations:

73



TestScore = 𝛽0 + 𝛽1 STR + 𝑢, (6.1)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝑢, (6.2)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽3 lunch + 𝑢, (6.3)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽4 calworks + 𝑢, (6.4)
TestScore = 𝛽0 + 𝛽1 STR + 𝛽2 english + 𝛽3 lunch + 𝛽4 calworks + 𝑢. (6.5)

The best way to report regression results is in a table. The stargazer package is very con-
venient for this purpose. It provides a function that generates professionally looking HTML
and LaTeX tables that satisfy scientific standards. One simply has to provide one or multiple
object(s) of class lm. The rest is done by the function stargazer().

# estimate different model specifications
spec1 <- lm(score ~ STR, data = CASchools)
spec2 <- lm(score ~ STR + english, data = CASchools)
spec3 <- lm(score ~ STR + english + lunch, data = CASchools)
spec4 <- lm(score ~ STR + english + calworks, data = CASchools)
spec5 <- lm(score ~ STR + english + lunch + calworks, data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(spec1))),

sqrt(diag(vcovHC(spec2))),
sqrt(diag(vcovHC(spec3))),
sqrt(diag(vcovHC(spec4))),
sqrt(diag(vcovHC(spec5))))

stargazer(spec1, spec2, spec3, spec4, spec5,
font.size = "footnotesize",
se = rob_se,
type="latex",
omit.stat = "f", header = FALSE)

Each column in this table contains most of the information provided also by coeftest()
and summary() for each of the models under consideration. Each of the coefficient estimates
includes its standard error in parenthesis and one, two or three asterisks representing their
significance levels (10% , 5% and 1%). Although 𝑡-statistics are not reported, one may compute
them manually simply by dividing a coefficient estimate by the corresponding standard error.
At the bottom of the table summary statistics for each model and a legend are reported.

From the model comparison we observe that including control variables approximately cuts
the coefficient on 𝑆𝑇 𝑅 in half. Additionally, the estimation seems to remain unaffected by the
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Table 6.1

Dependent variable:
score

(1) (2) (3) (4) (5)
STR −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.524) (0.437) (0.274) (0.343) (0.273)

english −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.037)

lunch −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.039)

calworks −0.790∗∗∗ −0.048
(0.070) (0.062)

Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.461) (8.812) (5.641) (7.006) (5.615)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 (df = 418) 14.464 (df = 417) 9.080 (df = 416) 11.654 (df = 416) 9.084 (df = 415)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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specific set of control variables employed. Thus, the inference drawn is that, under all other
conditions held constant, reducing the student-teacher ratio by one unit is associated with an
estimated average rise in test scores of roughly 1 point.

Incorporating student characteristics as controls increased both 𝑅2 and ̄𝑅2 from about 0.05
(spec1) to about 0.77 (spec3 and spec5), indicating these variables’ suitability as predictors
for test scores.

We also observe that the coefficients for some of the control variables are not significant in
some models. For example in spec5, the coefficient on 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 is not significantly different
from zero at the 10% level.

Lastly, we see that the effect on the estimate (and its standard error) of the coefficient on
𝑆𝑇 𝑅 when adding 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 to the base specification spec3 is minimal. Hence, we can identify
calworks as an unnecessary control variable, especially considering the incorporation of 𝑙𝑢𝑛𝑐ℎ
in this model.

6.5 Nonlinear Specifications

Sometimes a nonlinear regression function is better suited for estimating a population rela-
tionship. Let’s have a look at an example that explores the relationship between the income
of schooling districts and their test scores.

We start our analysis by computing the correlation between both variables.

cor(CASchools$income, CASchools$score)

[1] 0.7124308

Income and test score are positively correlated: school districts with above-average income
tend to achieve above-average test scores. But does a linear regression adequately model the
data? To investigate this further, let’s visualize the data by plotting it and adding a linear
regression line.

# Fit a simple linear model and plot observations with the regression line
linear_model <- lm(score ~ income, data = CASchools)
plot(CASchools$income, CASchools$score, col = "steelblue", pch = 20,

xlab = "District Income (thousands of dollars)", ylab = "Test Score",
main = "Test Score vs. District Income and a Linear OLS Regression Function")

abline(linear_model, col = "red", lwd = 2) # Add regression line
legend("bottomright", "Linear Fit", col = "red", lwd = 2) # Add legend
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The plot shows that the linear regression line seems to overestimate the true relationship
when income is either very high or very low and it tends to underestimates it for the middle
income group. Luckily, Ordinary Least Squares (OLS) isn’t limited to linear regressions of the
predictors. We have the flexibility to model test scores as a function of income and the square
of income.

This leads us to the following regression model:

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + 𝛽2 𝑖𝑛𝑐𝑜𝑚𝑒2
𝑖 + 𝑢𝑖

which is a quadratic regression model. Here we treat 𝑖𝑛𝑐𝑜𝑚𝑒2 as an additional explanatory
variable.

# fit the quadratic Model
quadratic_model <- lm(score ~ income + I(income^2), data = CASchools)

# obtain the model summary
coeftest(quadratic_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 607.3017435 2.9242237 207.6796 < 2.2e-16 ***
income 3.8509939 0.2711045 14.2048 < 2.2e-16 ***
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I(income^2) -0.0423084 0.0048809 -8.6681 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated function is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 607.3
(2.93)

+ 3.85
(0.27)

𝑖𝑛𝑐𝑜𝑚𝑒𝑖 − 0.0423
(0.00489)

𝑖𝑛𝑐𝑜𝑚𝑒2
𝑖

We will now draw the same scatter plot as for the linear model and add the regression line
for the quadratic model. Since abline() only plots straight lines, it cannot be used here,
but we can use lines() function instead, which is suitable for plotting nonstraight lines (see
?lines). The most basic call of lines() is lines(x_values, y_values) where x_values
and y_values are vectors of the same length that provide coordinates of the points to be
sequentially connected by a line.

This requires sorted coordinate pairs according to the X-values. We may use the function
order() to sort the fitted values of score according to the observations of income, obtained
from our quadratic model.

# Plot observations and add linear and quadratic regression lines
plot(CASchools$income, CASchools$score, col="steelblue", pch=20,

xlab="District Income (thousands of dollars)", ylab="Test Score",
main="Estimated Linear and Quadratic Regression Functions")

# Linear regression line
abline(linear_model, col="green", lwd=2)
# Quadratic regression line
lines(CASchools$income[order(CASchools$income)],

fitted(quadratic_model)[order(CASchools$income)], col="red", lwd=2)
legend("bottomright", c("Quadratic Fit", "Linear Fit"), lwd=2, col=c("red", "green"))

As the plot shows, the quadratic function appears to provide a better fit to the data compared
to the linear function.

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a level-log model
LinearLog_model <- lm(score ~ log(income), data = CASchools)

# compute robust summary
coeftest(LinearLog_model, vcov = vcovHC)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 557.8323 3.8622 144.433 < 2.2e-16 ***
log(income) 36.4197 1.4058 25.906 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 557.8
(3.86)

+ 36.42
(1.41)

log(𝑖𝑛𝑐𝑜𝑚𝑒)

We plot this function

# Draw a scatterplot with linear and linear-log regression lines
plot(score ~ income, data = CASchools, col = "steelblue", pch = 20,

ylab="Score", xlab="Income", main = "Linear-Log Regression Line")
order_id <- order(CASchools$income)
# Linear-log regression line
lines(CASchools$income[order_id], fitted(LinearLog_model)[order_id],

col = "red", lwd = 2)
# Linear regression line
lines(CASchools$income[order_id], fitted(linear_model)[order_id],
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col = "green", lwd = 2)
legend("bottomright", c("Linear-log Fit", "Linear Fit"),

lwd = 2, col = c("red", "green"))
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We can interpret ̂𝛽1 as follows: a 1% increase in income is associated with an average increase
in test scores of 0.01 ⋅ 36.42 = 0.36 points.

6.6 Interactions

Sometimes it is interesting to learn how the effect on 𝑌 of a change in an independent variable
depends on the value of another independent variable.

For example, we may ask if districts with many English learners benefit differently from a
decrease in the student-teacher ratio compared to those with fewer English learning students.
We can assess this by using a multiple regression model and including an interaction term.

We consider three cases: when both independent variables are binary, when one is binary and
the other is continuous, and when both are continuous.

6.6.1 Two Binary Variables

Let

𝐻𝑖𝑆𝑇 𝑅 = {1, if STR ≥ 20,
0, else,

𝐻𝑖𝐸𝐿 = {1, if english ≥ 10,
0, else.
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In R, we construct these dummies as follows

# append HiSTR to CASchools
CASchools$HiSTR <- as.numeric(CASchools$STR >= 20)

# append HiEL to CASchools
CASchools$HiEL <- as.numeric(CASchools$english >= 10)

We now estimate the model

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝐻𝑖𝑆𝑇 𝑅 + 𝛽2 𝐻𝑖𝐸𝐿 + 𝛽3 𝐻𝑖𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿 + 𝑢𝑖.

We can simply indicate HiEL * HiSTR inside the lm() formula to add the interaction term to
the model. Note that this adds 𝐻𝑖𝐸𝐿, 𝐻𝑖𝑆𝑇 𝑅 and their interaction as regressors, whereas
indicating HiEL:HiSTR only adds the interaction term.

# estimate the model with a binary interaction term
bi_model <- lm(score ~ HiSTR * HiEL, data = CASchools)

# print a robust summary of the coefficients
coeftest(bi_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 664.1433 1.3908 477.5272 < 2.2e-16 ***
HiSTR -1.9078 1.9416 -0.9826 0.3264
HiEL -18.3155 2.3453 -7.8094 4.721e-14 ***
HiSTR:HiEL -3.2601 3.1360 -1.0396 0.2991
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 664.1
(1.39)

− 1.9
(1.94)

HiSTR − 18.3
(2.35)

HiEL − 3.3
(3.14)

(HiSTR ⋅ HiEL)

According to this model, when moving from a school district with a low student-teacher ratio
to one with a high ratio, the average effect on test scores depends on the percentage of English
learners (HiEL), and can be computed as −1.9 − 3.3 ⋅ 𝐻𝑖𝐸𝐿.
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This is, for districts with fewer English learners (𝐻𝑖𝐸𝐿 = 0), the expected decrease in test
scores is 1.9 points. However, for districts with a higher proportion of English learners
(𝐻𝑖𝐸𝐿 = 1), the predicted decrease in test scores is 1.9 + 3.3 = 5.2 points.

We can estimate the mean test score conditional on all possible combination of the included
binary variables

𝐻𝑖𝑆𝑇 𝑅 𝐻𝑖𝐸𝐿 𝐸[𝑠𝑐𝑜𝑟𝑒|𝐻𝑖𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿]𝑠𝑐𝑜𝑟𝑒
0 0 𝛽0 664.1
0 1 𝛽0 + 𝛽2 645.8
1 0 𝛽0 + 𝛽1 662.2
1 1 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 640.6

6.6.2 Continuous and Binary Variables

This specification where the interaction term includes a continuous variable (𝑋𝑖) and a binary
variable (𝐷𝑖) allows for the slope to depend on the binary variable. There are three different
possibilities:

1. Different intercepts, same slope:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝑢𝑖

2. Different intercepts and slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3(𝑋𝑖 ⋅ 𝐷𝑖) + 𝑢𝑖

3. Same intercept, different slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 ⋅ 𝐷𝑖) + 𝑢𝑖.
Does the effect on test scores of cutting the student-teacher ratio depend on whether the
percentage of students still learning English is high or low?

One way to answer this question is to use a specification that allows for two different regression
lines, depending on whether there is a high or a low percentage of English learners. This is
achieved using the different intercept/different slope specification. We estimate the regression
model

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇 𝑅𝑖 + 𝛽2 𝐻𝑖𝐸𝐿𝑖 + 𝛽3 (𝑆𝑇 𝑅𝑖 ⋅ 𝐻𝑖𝐸𝐿𝑖) + 𝑢𝑖
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# estimate the model
bci_model <- lm(score ~ STR + HiEL + STR * HiEL, data = CASchools)

# print robust summary of coefficients
coeftest(bci_model, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.24584 12.07126 56.5182 <2e-16 ***
STR -0.96846 0.59943 -1.6156 0.1069
HiEL 5.63914 19.88866 0.2835 0.7769
STR:HiEL -1.27661 0.98557 -1.2953 0.1959
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2
(12.07)

− 0.97
(0.60)

𝑆𝑇 𝑅 + 5.6
(19.89)

𝐻𝑖𝐸𝐿 − 1.28
(0.99)

(𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿).

The estimated regression line for districts with a low fraction of English learners (𝐻𝑖𝐸𝐿 = 0)
is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 − 0.97 𝑆𝑇 𝑅𝑖

while the one for districts with a high fraction of English learners (𝐻𝑖𝐸𝐿 = 1) is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 + 5.6 − 0.97 𝑆𝑇 𝑅𝑖 − 1.28 𝑆𝑇 𝑅𝑖
= 687.8 − 2.25 𝑆𝑇 𝑅𝑖.

The expected rise in test scores after decreasing the student-teacher ratio by one unit is roughly
0.97 points in districts with a low proportion of English learners, but 2.25 points in districts
with a high concentration of English learners.

The coefficient on the interaction term, “𝑆𝑇 𝑅 ⋅ 𝐻𝑖𝐸𝐿”, indicates that the contrast between
these effects amounts to 1.28 points.

We now plot both regression lines from the model by using different colors to differentiate each
of the 𝑆𝑇 𝑅 levels.
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# Determine observations with English learners >= 10%
id <- CASchools$english >= 10

# Plot observations with different colors for HiEL status and draw regression lines
plot(CASchools$STR, CASchools$score, xlim = c(0, 27), ylim = c(600, 720), pch = 20,

col = ifelse(id, "green", "red"), xlab = "Class Size", ylab = "Test Score")
legend("topleft", pch = 20, col = c("red", "green"), legend = c("HiEL = 0", "HiEL = 1"))
abline(coef = c(bci_model$coefficients[1], bci_model$coefficients[2]),

col = "red", lwd = 1.5)
abline(coef = c(bci_model$coefficients[1] + bci_model$coefficients[3],

bci_model$coefficients[2] + bci_model$coefficients[4]),
col = "green", lwd = 1.5)
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6.6.3 Two Continuous Variables

Let’s now examine the interaction between the continuous variables student-teacher ratio
(𝑆𝑇 𝑅) and the percentage of English learners (𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

# estimate regression model including the interaction between 'english' and 'STR'
cci_model <- lm(score ~ STR + english + english * STR, data = CASchools)

# print summary
coeftest(cci_model, vcov. = vcovHC)

t test of coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.3385268 11.9378561 57.4926 < 2e-16 ***
STR -1.1170184 0.5965151 -1.8726 0.06183 .
english -0.6729119 0.3865378 -1.7409 0.08245 .
STR:english 0.0011618 0.0191576 0.0606 0.95167
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

̂𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 686.3
(11.94)

− 1.12
(0.60)

𝑆𝑇 𝑅 − 0.67
(0.39)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 0.0012
(0.02)

(𝑆𝑇 𝑅 ⋅ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

Before proceeding with the interpretations, let us explore the quartiles of 𝑒𝑛𝑔𝑙𝑖𝑠ℎ

summary(CASchools$english)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.941 8.778 15.768 22.970 85.540

When the percentage of English learners is at the median (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 8.778), the slope of the
line is estimated to be (−1.12 + 0.0012 ⋅ 8.778 = −1.12). When the percentage of English
learners is at the 75th percentile (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 22.97), this line is estimated to be slightly flatter,
with a slope of −1.12 + 0.0012 ⋅ 22.97 = −1.09.

In other words, for a district with 8.78% English learners, the estimated effect of a one-unit
reduction in the student-teacher ratio is to increase on average test scores by 1.11 points, but
for a district with 23% English learners, reducing the student-teacher ratio by one unit is
predicted to increase test scores on average by 1.09 points.

However, it is important to note from the output of coeftest() that the estimated coefficient
on the interaction term (𝛽3) is not statistically significant at the 10% level, so we cannot reject
the null hypothesis 𝐻0 ∶ 𝛽3 = 0.

6.7 Nonliearities in Score Regressions

This section examines three key questions about test scores and the student-teacher ratio.

• First, it explores if reducing the student-teacher ratio affects test scores differently based
on the number of English learners, even when considering economic differences across
districts.
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• Second, it investigates if this effect varies depending on the student-teacher ratio.

• Lastly, it aims to determine the expected impact on test scores when the student-teacher
ratio decreases by two students per teacher, considering both economic factors and po-
tential nonlinear relationships.

We will answer these questions considering the previously explained nonlinear regression spec-
ifications, extended to include two measures of the economic background of the students: the
percentage of students eligible for a subsidized lunch (𝑙𝑢𝑛𝑐ℎ) and the logarithm of average
district income (𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒)).
The logarithm of district income is used following our previous empirical analysis, which sug-
gested that this specification captures the nonlinear relationship between scores and income.

We leave out the expenditure per pupil (𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒) from our analysis because including it
would suggest that spending changes with the student-teacher ratio (in other words, we would
not be holding expenditures per pupil constant).

We will consider 7 different model specifications:

# estimate all models
TS_mod1 <- lm(score ~ STR + english + lunch, data = CASchools)
TS_mod2 <- lm(score ~ STR + english + lunch + log(income), data = CASchools)
TS_mod3 <- lm(score ~ STR + HiEL + HiEL:STR, data = CASchools)
TS_mod4 <- lm(score ~ STR + HiEL + HiEL:STR + lunch + log(income), data = CASchools)
TS_mod5 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income),

data = CASchools)
TS_mod6 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) + HiEL:I(STR^3)

+ lunch + log(income), data = CASchools)
TS_mod7 <- lm(score ~ STR + I(STR^2) + I(STR^3) + english + lunch + log(income),

data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(TS_mod1))),

sqrt(diag(vcovHC(TS_mod2))),
sqrt(diag(vcovHC(TS_mod3))),
sqrt(diag(vcovHC(TS_mod4))),
sqrt(diag(vcovHC(TS_mod5))),
sqrt(diag(vcovHC(TS_mod6))),
sqrt(diag(vcovHC(TS_mod7))))

stargazer(TS_mod1, TS_mod2, TS_mod3, TS_mod4,
TS_mod5, TS_mod6, TS_mod7,
font.size = "footnotesize",
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se = rob_se,
type="latex",
omit.stat = "f", df=FALSE, header = FALSE)

Table 6.3

Dependent variable:
score

(1) (2) (3) (4) (5) (6) (7)
STR −0.998∗∗∗ −0.734∗∗∗ −0.968 −0.531 64.339∗∗ 83.702∗∗∗ 65.285∗∗

(0.274) (0.261) (0.599) (0.350) (27.295) (31.506) (27.708)

english −0.122∗∗∗ −0.176∗∗∗ −0.166∗∗∗

(0.033) (0.034) (0.035)

I(STR 2̂) −3.424∗∗ −4.381∗∗∗ −3.466∗∗

(1.373) (1.597) (1.395)

I(STR 3̂) 0.059∗∗∗ 0.075∗∗∗ 0.060∗∗∗

(0.023) (0.027) (0.023)

lunch −0.547∗∗∗ −0.398∗∗∗ −0.411∗∗∗ −0.420∗∗∗ −0.418∗∗∗ −0.402∗∗∗

(0.024) (0.034) (0.029) (0.029) (0.029) (0.034)

log(income) 11.569∗∗∗ 12.124∗∗∗ 11.748∗∗∗ 11.800∗∗∗ 11.509∗∗∗

(1.841) (1.823) (1.799) (1.809) (1.834)

HiEL 5.639 5.498 −5.474∗∗∗ 816.076∗∗

(19.889) (10.012) (1.046) (354.100)

STR:HiEL −1.277 −0.578 −123.282∗∗

(0.986) (0.507) (54.290)

I(STR 2̂):HiEL 6.121∗∗

(2.752)

I(STR 3̂):HiEL −0.101∗∗

(0.046)

Constant 700.150∗∗∗ 658.552∗∗∗ 682.246∗∗∗ 653.666∗∗∗ 252.050 122.353 244.809
(5.641) (8.749) (12.071) (10.053) (179.724) (205.050) (181.899)

Observations 420 420 420 420 420 420 420
R2 0.775 0.796 0.310 0.797 0.801 0.803 0.801
Adjusted R2 0.773 0.794 0.305 0.795 0.798 0.799 0.798
Residual Std. Error 9.080 8.643 15.880 8.629 8.559 8.547 8.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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What can be concluded from the results presented?

• First, we we see the estimated coefficient on 𝑆𝑇 𝑅 is highly significant in all models
except from specifications (3) and (4).

• When we add 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒) to model (1) in the second specification, all coefficients remain
highly significant while the coefficient on the new regressor is also statistically significant
at the 1% level. Additionally, the coefficient on 𝑆𝑇 𝑅 is now 0.27 higher than in model
(1), suggesting a possible mitigation of omitted variable bias when including 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒)
as regressor. For these reasons, it makes sense to keep this variable in other models too.

• Models (3) and (4) include the interaction term between 𝑆𝑇 𝑅 and 𝐻𝑖𝐸𝐿, first without
control variables in the third specification and then controlling for economic factors in
the fourth. The estimated coefficient for the interaction term is not significant at any
common level in any of these models, nor is the coefficient on the dummy variable 𝐻𝑖𝐸𝐿.
Hence, despite accounting for economic factors, we cannot reject the null hypotheses that
the impact of the student-teacher ratio on test scores remains consistent across districts
with high and low proportions of English learning students.

• In regression (5) we have included quadratic and cubic terms for 𝑆𝑇 𝑅, while omitting
the interaction term between 𝑆𝑇 𝑅 and 𝐻𝑖𝐸𝐿, since it was not significant in specification
(4). The results indicate high levels of significance for these estimated coefficients and
we can therefore assume the presence of a nonlinear effect of the student-teacher ration
on test scores. This could be also verified with an 𝐹 -test of 𝐻0 ∶ 𝛽2 = 𝛽3 = 0.

• Regression (6) further examines whether the proportion of English learners influences
the student-teacher ratio, incorporating the interaction terms 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅2

and 𝐻𝑖𝐸𝐿 ⋅ 𝑆𝑇 𝑅3. Each individual 𝑡-test confirms significant effects. To validate this,
we perform a robust 𝐹 -test to assess 𝐻0 ∶ 𝛽5 = 𝛽6 = 𝛽7 = 0.

# check joint significance of the interaction terms
waldtest(TS_mod6,

c("STR:HiEL", "I(STR^2):HiEL", "I(STR^3):HiEL"),
vcov = vcovHC)

Wald test

Model 1: score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +
HiEL:I(STR^3) + lunch + log(income)

Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income)
Res.Df Df F Pr(>F)

1 410
2 413 -3 2.1885 0.08882 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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• With a 𝑝-value of 0.08882 we can just reject the null hypothesis at the 10% level. This
provides only weak evidence that the regression functions are different for districts with
high and low percentages of English learners.

• In model (7), we employ a continuous measure for the proportion of English learners
instead of a dummy variable (thus omitting interaction terms). We note minimal alter-
ations in the coefficient estimates for the remaining regressors. Consequently, we infer
that the findings observed in model (5) are robust and not influenced significantly by
the method used to measure the percentage of English learners.

We can now address the initial questions raised in this section:

• First, in the linear models, the impact of the percentage of English learners on changes
in test scores due to variations in the student-teacher ratio is minimal, a conclusion
that holds true even after accounting for students’ economic backgrounds. Although the
cubic specification (6) suggests that the relationship between student-teacher ratio and
test scores is influenced by the proportion of English learners, the magnitude of this
influence is not significant.

• Second, while controlling for students’ economic backgrounds, we identify nonlinearities
in the association between student-teacher ratio and test scores.

• Lastly, under the linear specification (2), a reduction of two students per teacher
in the student-teacher ratio is projected to increase test scores by approximately 1.46
points. As this model is linear, this effect remains consistent regardless of class size. For
instance, assuming a student-teacher ratio of 20, the nonlinear model (5) indicates
that the reduction in student-teacher ratio would lead to an increase in test scores by

64.33 ⋅ 18 + 182 ⋅ (−3.42) + 183 ⋅ (0.059)
− (64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059))

≈ 3.3

points. If the ratio was 22, a reduction to 20 leads to a predicted improvement in test
scores of

64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059)
− (64.33 ⋅ 22 + 222 ⋅ (−3.42) + 223 ⋅ (0.059))

≈ 2.4

points. This suggests that the effect is more evident in smaller classes.

6.8 R-codes

methods-sec06.R
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7 Regression Diagnostics

This section discusses some graphical and analytical regression diagnostic techniques for de-
tecting outliers and assessing whether the assumptions of our regression model are met.

7.1 Leverage values

Leverage values ℎ𝑖𝑖 indicate how much influence an observation 𝑋𝑋𝑋𝑖 has on the regression fit.
They are calculated as

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖

and represent the diagonal entries of the hat-matrix

𝑃𝑃𝑃 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′.

A low leverage implies the presence of many regressor observations similar to 𝑋𝑋𝑋𝑖 in the sample,
while a high leverage indicates a lack of similar observations near 𝑋𝑋𝑋𝑖.

An observation with a high leverage ℎ𝑖𝑖 but a response value 𝑌𝑖 that is close to the true
regression line 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 (indicating a small error 𝑢𝑖) is considered a good leverage point. It
positively influences the model, especially in data-sparse regions.

Conversely, a bad leverage point occurs when both ℎ𝑖𝑖 and the error 𝑢𝑖 are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.

7.2 Standardized residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation �̂�𝑖 because they
provide insight into the properties of the unknown error terms 𝑢𝑖.

Under the homoskedastic linear regression model (A1)–(A5), the errors are independent and
have the property

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝜎2.
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Since 𝑃𝑃𝑃𝑋𝑋𝑋 = 𝑋𝑋𝑋 and, therefore,

̂𝑢𝑢𝑢 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢) = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑢𝑢𝑢,

the residuals have a different property:

𝑉 𝑎𝑟[ ̂𝑢𝑢𝑢|𝑋𝑋𝑋] = 𝜎2(𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃).

The 𝑖-th residual satisfies
𝑉 𝑎𝑟[�̂�𝑖|𝑋𝑋𝑋] = 𝜎2(1 − ℎ𝑖𝑖),

where ℎ𝑖𝑖 is the 𝑖-th leverage value.

Under the assumption (A5), the variance of �̂�𝑖 depends on X, while the variance of 𝑢𝑖 does
not. Dividing by √1 − ℎ𝑖𝑖 removes the dependency:

𝑉 𝑎𝑟[ �̂�𝑖
√1 − ℎ𝑖𝑖

∣𝑋𝑋𝑋] = 𝜎2

The standardized residuals are defined as follows:

𝑟𝑖 ∶= �̂�𝑖

√𝑠2
�̂�(1 − ℎ𝑖𝑖)

.

Standardized residuals are available using the R command rstandard().

7.3 Diagnostics plots

Let’s consider the CASchools dataset from the previous subsection:

library(AER)
data(CASchools)
CASchools$STR <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math)/2
TS_mod7 <- lm(score ~ STR + I(STR^2) + I(STR^3)

+ english + lunch + log(income),
data = CASchools)

The plot() function applied to an lm object returns four diagnostics plots:

par(mfrow=c(2,2))
plot(TS_mod7)
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These plots show different scatterplots of the fitted values 𝑌𝑖, residuals �̂�𝑖, quantiles of the
standard normal distribution, leverage values, and standardized residuals.

The red solid line indicates a local scatterplot smoother, which is a smooth locally weighted
line through the points on the scatterplot to visualize the general pattern of the data.

Plot 1: Residuals vs Fitted

This plot indicates whether there are strong hidden nonlinear relationships between the re-
sponse and the regressors that are not captured by the model. If a linear model is estimated
but the relationship is nonlinear, then the assumption (A1) 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0 is violated.
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The residuals serve as a proxy for the unknown error terms. If you find equally spread residuals
around a horizontal line without distinct patterns, that is a good indication you don’t have
non-linear relationships.

In the CASchools regression, there is only little indication for an omitted non-linear relation-
ship. Here is an example of a strong omitted nonlinear pattern:

# Set seed for reproducability
set.seed(1)
# Simulate normally distributed regressors
X = rnorm(200)
# Simulate response nonlinearly
Y = X + X^2 + rnorm(200)
# Omit the nonlinearity in the regression
plot(lm(Y ~ X), which = 1)
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Plot 2: Normal Q-Q

The QQ plot is a graphical tool to help us assess if the errors are conditionally normally
distributed, i.e. whether assumption (A6) is satisfied.

Let 𝑟(𝑖) be the order statistics of the standardized residuals (sorted standardized residuals).
The QQ plot plots the ordered standardized residuals 𝑢∗

(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles
of the standard normal distribution.
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If the residuals are lined well on the straight dashed line, there is indication that the distribution
of the residuals is close to a normal distribution.

In the CASchools regression, we see a slight deviation from normality in the tails. Here is an
extrem example with a strong deviation from normality:

# Exponentially distributed response variable
Y = rexp(200)
# Intercept only regression model
plot(lm(Y ~ 1), which = 2)
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Plot 3: Scale-Location

This plot shows if error terms are spread equally along the ranges of regressor values, which
is how you can check the assumption of homoskedasticity (A5).

If you see a horizontal line with equally spread points, there is no indication for heteroskedas-
ticity.

In the CASchools regression, we have some indication for weak heteroskedasticity. Here is an
example with extreme heteroskedasticity:

## simulate regressor values
X = rnorm(200)
## error variance varies with the regressor value
u = rnorm(200)*X^2
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## response value
Y = X + u
plot(lm(Y ~ X), which = 3)
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Plot 4: Residuals vs Leverage

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

The plot also shows Cook’s distance thresholds. Cook’s distance for observation 𝑖 is defined
as

𝐷𝑖 =
( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′𝑋𝑋𝑋′𝑋𝑋𝑋( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)

𝑘𝑠2
�̂�

,

where
̂𝛽𝛽𝛽(−𝑖) = ̂𝛽𝛽𝛽 − (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖�̂�𝑖(1 − ℎ𝑖𝑖)−1

is the 𝑖-th leave-one-out estimator (the OLS estimator when the 𝑖-th observation is left out).

We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.

Here is an example with two high leverage points. Observation 𝑖 = 200 is a good leverage
point and 𝑖 = 199 is a bad leverage point:
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## simulate regressors and errors
X = rnorm(250)
u = rnorm(250)
## set some unusual observations manually
X[199] = 6
X[200] = 6
u[199] = 5
u[200] = 0
## define dependent variable
Y = X + u
## residuals vs leverage plot
plot(lm(Y ~ X), which = 5)
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7.4 Diagnostics tests

The asymptotic properties of the OLS estimator and inferential methods using HC-type stan-
dard errors do not depend on the validity of the homoskedasticity and normality assumptions
(A5)–(A6).

However, if you are interested in exact inference, verifying the assumptions (A5)–(A6) becomes
crucial, especially in small samples.
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7.4.1 Breusch-Pagan Test (Koenker’s version)

Under homoskedasticity, the variance of the error term does not depend on the values of the
regressors.

To test for heteroskedasticity, we regress the squared residuals on the regressors.

�̂�2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛. (7.1)

Here, 𝛾𝛾𝛾 are the auxiliary coefficients and 𝑣𝑖 are the auxiliary error terms. Under homoskedas-
ticity, the regressors should not be able to explain any variation in the residuals.

Let 𝑅2
𝑎𝑢𝑥 be the r-squared coefficient of the auxiliary regression of Equation 7.1. The test

statistic:
𝐵𝑃 = 𝑛𝑅2

𝑎𝑢𝑥

Under the null hypothesis of homoskedasticity, we have

𝐵𝑃 𝐷→ 𝜒2
𝑘−1

Test decision rule: Reject 𝐻0 if 𝐵𝑃 exceeds 𝜒2
(1−𝛼,𝑘−1).

In R we can apply the bptest() function from the lmtest package to the lm object of our
regression.

7.4.2 Jarque-Bera Test

A general property of any normally distributed random variable is that it has a skewness of 0
and a kurtosis of 3.

Under (A5)–(A6), we have 𝑢𝑖 ∼ 𝒩(0, 𝜎2), which implies 𝐸[𝑢3
𝑖 ] = 0 and 𝐸[𝑢4

𝑖 ] = 3𝜎4.

Consider the sample skewness and the sample kurtosis of the residuals from your regression:

𝑠𝑘𝑒𝑤�̂� = 1
𝑛�̂�3

�̂�

𝑛
∑
𝑖=1

�̂�3
𝑖 , 𝑘𝑢𝑟𝑡�̂� = 1

𝑛�̂�4
�̂�

𝑛
∑
𝑖=1

�̂�4
𝑖

Jarque-Bera test statistic and null distribution if (A5)–(A6) hold:

𝐽𝐵 = 𝑛(1
6(𝑠𝑘𝑒𝑤�̂�)2 + 1

24(𝑘𝑢𝑟𝑡�̂� − 3)2) 𝐷→ 𝜒2
2.

Test decision rule: Reject the null hypothesis of normality if 𝐽𝐵 exceeds 𝜒2
(1−𝛼,2).

The Jarque-Bera test is sensitive to outliers.

In R we apply use the jarque.test() function from the moments package to the residual
vector from our regression.
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7.5 R-codes

methods-sec07.R
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Part III

C) Panel Data Methods
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8 Panel Regression

library(plm) # estimating panel models
library(lmtest) # regression inference

8.1 Panel Data

Panel data is data collected from multiple individuals at multiple points in time.

Individuals in a typical economic panel data application are people, households, firms, schools,
regions, or countries. Time periods are often measured in years (annual data), but may have
other frequencies.

𝑌𝑖𝑡 denotes a variable for individual 𝑖 at time period 𝑡. We index observations by both indi-
viduals 𝑖 = 1, … , 𝑛 and the time period 𝑡 = 1, … , 𝑇 .

Multivariate panel data with 𝑘 variables can be written as 𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡, or, in vector form,

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

𝑋1,𝑖𝑡
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

In a balanced panel, each individual 𝑖 = 1, … , 𝑛 has 𝑇 observations. The total number of
observations is 𝑛𝑇 . In typical economic panel datasets we have 𝑛 > 𝑇 (more individuals than
time points) or 𝑛 ≈ 𝑇 (roughly the same number of individuals as time points).

Often panel data have some missing data for at least one time period for at least one entity.
In this case, we call it an unbalanced panel. Notation for unbalanced panels is tedious, so we
focus here only on balanced panels. Statistical software can handle unbalanced panel data in
much the same way as balanced panel data.
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8.2 Pooled Regression

The simplest regression model for panel data is the pooled regression.

Consider a panel dataset with dependent variable 𝑌𝑖𝑡 and 𝑘 independent variables
𝑋1,𝑖𝑡, … , 𝑋𝑘,𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The first regressor variable represents an intercept (i.e. 𝑋1,𝑖𝑡 = 1). We stack the regressor
variables into the 𝑘 × 1 vector

𝑋𝑋𝑋𝑖𝑡 =
⎛⎜⎜⎜⎜
⎝

1
𝑋2,𝑖𝑡

⋮
𝑋𝑘,𝑖𝑡

⎞⎟⎟⎟⎟
⎠

.

The idea of pooled regression is to pool all observations over 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 and
run a regression on the combined 𝑛𝑇 observations.

Pooled Panel Regression Model

The pooled linear panel regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 =
1, … , 𝑇 is

𝑌𝑖𝑡 = 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡,

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error
term for individual 𝑖 at time 𝑡.
The pooled OLS estimator is

̂𝛽𝛽𝛽pool = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑌𝑖𝑡).

Similar to linear regression, we can combine the regressors into a pooled regressor matrix of
order 𝑛𝑇 × 𝑘:

𝑋𝑋𝑋 = (𝑋𝑋𝑋11, … ,𝑋𝑋𝑋1𝑇 ,𝑋𝑋𝑋21, … ,𝑋𝑋𝑋2𝑇 , … ,𝑋𝑋𝑋𝑛1, … ,𝑋𝑋𝑋𝑛𝑇 )′.
The dependent variable vector is of the order 𝑛𝑇 × 1:

𝑌𝑌𝑌 = (𝑌11, … , 𝑌1𝑇 , 𝑌21, … , 𝑌2𝑇 , … , 𝑌𝑛1, … , 𝑌𝑛𝑇 )′.

In matrix notation, the pooled OLS estimator becomes

̂𝛽𝛽𝛽pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

To illustrate the pooled OLS estimator, consider the Grunfeld dataset, which provides invest-
ment, capital stock, and firm value data for 10 firms over 20 years.
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data(Grunfeld, package = "plm")
head(Grunfeld)

firm year inv value capital
1 1 1935 317.6 3078.5 2.8
2 1 1936 391.8 4661.7 52.6
3 1 1937 410.6 5387.1 156.9
4 1 1938 257.7 2792.2 209.2
5 1 1939 330.8 4313.2 203.4
6 1 1940 461.2 4643.9 207.2

fit1 = lm(inv~capital, data=Grunfeld)
fit1

Call:
lm(formula = inv ~ capital, data = Grunfeld)

Coefficients:
(Intercept) capital

14.2362 0.4772

In principle, the same assumptions can be made as for the linear regression model. However, in
view of (A2), the assumption that (𝑌𝑖𝑡,𝑋𝑋𝑋𝑖𝑡) is independent of (𝑌𝑖,𝑡−1,𝑋𝑋𝑋𝑖,𝑡−1) is unreasonable
because we expect 𝑌𝑖𝑡 and 𝑌𝑖,𝑡−1 to be correlated (autocorrelation) for the same firm 𝑖.
This can be seen in the graph below. The observations appear in clusters, with each firm
forming a cluster.

plot(inv~capital, col=as.factor(firm), data = Grunfeld)
legend("bottomright", legend=1:10, col=1:10, pch = 1, title="Firm", cex=0.8)
abline(fit1, col = "red")

It is still reasonable to assume that the observations of different individuals are independent.
For example, if the firms are randomly selected, 𝑌𝑖𝑡 and 𝑌𝑗,𝑡−1 should be independent for
𝑖 ≠ 𝑗.
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8.3 Pooled Regression Assumptions

We refine our assumptions for the pooled regression case:

• (A1-pool) conditional mean independence: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 ] = 0.

• (A2-pool) random sampling: (𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 ) are i.i.d. draws from their
joint population distribution for 𝑖 = 1, … , 𝑛.

• (A3-pool) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖𝑡] < ∞, 0 < 𝐸[𝑋4

𝑙,𝑖𝑡] < ∞ for all 𝑙 = 1, … , 𝑘.

• (A4-pool) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.

Under (A1-pool)–(A4-pool), ̂𝛽𝛽𝛽𝑝𝑜𝑜𝑙 is consistent for 𝛽𝛽𝛽 and asymptotically normal:

̂𝛽𝑖 − 𝛽𝑖
𝑠𝑑( ̂𝛽𝑖|𝑋𝑋𝑋)

𝐷→ 𝒩(0, 1) as 𝑛 → ∞

However, 𝑠𝑑( ̂𝛽𝑖|𝑋𝑋𝑋) = √𝑉 𝑎𝑟[ ̂𝛽𝑗|𝑋𝑋𝑋] is different than in the cross-sectional case because of the
clustered structure.

The error covariance matrix is of the order 𝑛𝑇 × 𝑛𝑇 and has the block matrix structure

𝐷𝐷𝐷 = 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝐷𝐷𝐷1 000 … 000
000 𝐷𝐷𝐷2 … 000
000 000 ⋱ 000
000 000 … 𝐷𝐷𝐷𝑛

⎞⎟⎟⎟⎟
⎠
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where 000 indicates the 𝑇 × 𝑇 matrix of zeros, and on the main diagonal we have the 𝑇 × 𝑇
cluster-specific covariance matrices

𝐷𝐷𝐷𝑖 =
⎛⎜⎜⎜⎜
⎝

𝐸[𝑢2
𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,1𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,1𝑢𝑖,𝑇 |𝑋𝑋𝑋]

𝐸[𝑢𝑖,2𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢2
𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢𝑖,2𝑢𝑖,𝑇 |𝑋𝑋𝑋]

⋮ ⋮ ⋱ ⋮
𝐸[𝑢𝑖,𝑇 𝑢𝑖,1|𝑋𝑋𝑋] 𝐸[𝑢𝑖,𝑇 𝑢𝑖,2|𝑋𝑋𝑋] … 𝐸[𝑢2

𝑖,𝑇 |𝑋𝑋𝑋]

⎞⎟⎟⎟⎟
⎠

for 𝑖 = 1, … , 𝑛.

We have 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1 with 𝑋𝑋𝑋′𝑋𝑋𝑋 = ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑋𝑋𝑋𝑖𝑡𝑋𝑋𝑋′
𝑖𝑡 and

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 = 𝐸[
𝑛

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡𝑢𝑖𝑡)
′
∣𝑋𝑋𝑋].

Therefore, to estimate 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋], we need a different estimator than in the cross-sectional
case.

The cluster-robust covariance matrix estimator is

𝑉𝑉𝑉 pool = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑁

∑
𝑖=1

(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡�̂�𝑖𝑡)(
𝑇

∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡�̂�𝑖𝑡)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

which is the cluster-robust analog of the HC0 sandwich estimator. The cluster-robust standard
errors are the squareroots of the diagonal entries of 𝑉𝑉𝑉 pool.

8.4 Pooled Regression Inference

To compute the sandwich form 𝑉𝑉𝑉 pool, we can use the plm package. It provides the plm() func-
tion for estimating linear panel models. The column names of our data frame corresponding
to the individual 𝑖 and the time 𝑡 are specified by the index option.

library(plm)
fit2 = plm(inv~capital,

index = c("firm", "year"),
model = "pooling",
data=Grunfeld)

fit2

Model Formula: inv ~ capital

Coefficients:
(Intercept) capital

14.23620 0.47722
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fit2 returns the same estimate as fit1, but is an object of the class plm. You can check it
by comparing class(fit1) and class(fit2).

The vcovHC function applied to a plm object returns the cluster-robust covariance matrix
𝑉𝑉𝑉 pool:

Vpool = vcovHC(fit2)
Vpool

(Intercept) capital
(Intercept) 786.5712535 0.34238311
capital 0.3423831 0.01584317
attr(,"cluster")
[1] "group"

coeftest(fit2, vcov. = Vpool)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.23620 28.04588 0.5076 0.6122959
capital 0.47722 0.12587 3.7914 0.0001988 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively, coeftest(fit2, vcov. = vcovHC) gives the same output. Notice the differ-
ence compared to coeftest(fit1, vcov. = vcovHC), which does not take into account the
clustered structure in the autocovariance matrix and uses 𝑉𝑉𝑉 HC3.

Similarly to the cross-sectional case, the functions coefci() and linearHypothesis() can be
used for confidence intervals and F/Wald tests.

8.5 R-codes

methods-sec08.R
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9 Fixed Effects

library(plm) # estimating panel models
library(lmtest) # regression inference
library(stargazer) # regression outputs

9.1 Time-constant Variables

Panel data allows us to control for variables that are constant over time, even if these variables
are not directly observable.

Consider a basic panel regression model:

𝑌𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑍𝑖 + 𝑢𝑖𝑡. (9.1)

Here, 𝑍𝑖 represents a variable that does not change over time and is specific to an individual
(e.g., gender, ethnicity, parental education).

For simplicity, assume here that observations are only available for two time periods (𝑡 = 1
and 𝑡 = 2). We can focus on the changes between these periods.

Subtracting the right-hand side of Equation 9.1 at 𝑡 = 1 from 𝑡 = 2 gives

𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑍𝑖 + 𝑢𝑖2 − (𝛽1 + 𝛽2𝑋𝑖1 + 𝛽3𝑍𝑖 + 𝑢𝑖1)
= 𝛽2Δ𝑋𝑖2 + Δ𝑢𝑖2.

The symbol Δ represents first-differencing, i.e. Δ𝑋𝑖2 = 𝑋𝑖2 − 𝑋𝑖1 and Δ𝑢𝑖2 = 𝑢𝑖2 − 𝑢𝑖1.

By first-differencing both sides of Equation 9.1, our model becomes

Δ𝑌𝑖2 = 𝛽2Δ𝑋𝑖2 + Δ𝑢𝑖2. (9.2)

𝛽1 and 𝛽3𝑍𝑖 do not appear in the transformed model Equation 9.2 because they are time-
constant and cancel out.

In this differenced model, 𝛽2 can be estimated by regressing Δ𝑌𝑖2 on Δ𝑋𝑖2 without an inter-
cept. This regression isolates the marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡 conditional on any unobserved
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individual characteristics like 𝑍𝑖. 𝛽2 is the marginal effect of 𝑋𝑖𝑡 on 𝑌𝑖𝑡 given the same
individual-specific time-constant characteristics.

We can control for any time-constant variable without actually observing it. This is a remark-
able advantage over conventional cross-sectional regression or pooled panel regression.

We may combine the terms 𝛽1 and 𝛽3𝑍𝑖 and define the individual-specific effect 𝛼𝑖 =
𝛽1 + 𝛽3𝑍𝑖. The term 𝛼𝑖 is also called individual fixed effect. The fixed effect cancels out
after taking first differences.

9.2 Fixed Effects Regression

Consider a panel dataset with dependent variable 𝑌𝑖𝑡, a vector of 𝑘 independent variables 𝑋𝑋𝑋𝑖𝑡,
and an individual fixed effect 𝛼𝑖 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

Because 𝛼𝑖 already represents any time-constant variable of individual 𝑖, we assume that all
variables in 𝑋𝑋𝑋𝑖𝑡 are time-varying. That is, 𝑋𝑋𝑋𝑖𝑡 neither contains an intercept nor any time-
constant variables like gender, birthplace, etc.

Fixed-effects Regression

The fixed-effects regression model equation for individual 𝑖 = 1, … , 𝑛 and time 𝑡 = 1, … , 𝑇 is

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡, (9.3)

where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑘)′ is the 𝑘 × 1 vector of regression coefficients and 𝑢𝑖𝑡 is the error term
for individual 𝑖 at time 𝑡.
The fixed effects regression assumptions are:

• (A1-fe) conditional mean independence: 𝐸[𝑢𝑖𝑡|𝑋𝑋𝑋𝑖1, … ,𝑋𝑋𝑋𝑖𝑇 , 𝛼𝑖] = 0.

• (A2-fe) random sampling: (𝛼𝑖, 𝑌𝑖1, … , 𝑌𝑖𝑇 ,𝑋𝑋𝑋′
𝑖1, … ,𝑋𝑋𝑋′

𝑖𝑇 ) are i.i.d. draws from their
joint population distribution for 𝑖 = 1, … , 𝑛.

• (A3-fe) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑖𝑡] < ∞, 0 < 𝐸[𝑢4

𝑖𝑡] < ∞.

• (A4-fe) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.
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9.3 Differenced Estimator

The first-differencing transformation can be used to estimate Equation 9.3:

Δ𝑌𝑖𝑡 = 𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1, Δ𝑋𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖,𝑡 − 𝑋𝑋𝑋𝑖,𝑡−1.

Taking first differences on both sides of Equation 9.3 implies

Δ𝑌𝑖𝑡 = (Δ𝑋𝑋𝑋𝑖𝑡)′𝛽𝛽𝛽 + Δ𝑢𝑖𝑡, (9.4)

where Δ𝑢𝑖𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1. Notice that the fixed effect 𝛼𝑖 cancels out.

Hence, we can apply the OLS principle to Equation 9.4 to estimate 𝛽𝛽𝛽. We regress the dif-
ferenced dependent variable Δ𝑌𝑖𝑡 on the differenced regressors Δ𝑋𝑋𝑋𝑖𝑡 for 𝑖 = 1, … , 𝑛 and
𝑡 = 2, … , 𝑇 .

A problem with this differenced estimator is that the transformed error term Δ𝑢𝑖𝑡 defines an
artificial correlation structure, which makes the estimator non-optimal. Δ𝑢𝑖,𝑡+1 = 𝑢𝑖,𝑡+1 − 𝑢𝑖,𝑡
is correlated with Δ𝑢𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1 through 𝑢𝑖,𝑡.

data(Grunfeld, package="plm")
fit.diff = plm(inv ~ capital-1,

index = c("firm", "year"),
effect = "individual",
model = "fd",
data=Grunfeld)

fit.diff

Model Formula: inv ~ capital - 1

Coefficients:
capital
0.23078

9.4 Within Estimator

An efficient estimator can be obtained by a different transformation. The idea is to consider
the individual specific means

𝑌 𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑌𝑖𝑡, 𝑋𝑋𝑋𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑖𝑡, 𝑢𝑖⋅ = 1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖𝑡.
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Taking the means of both sides of Equation 9.3 implies

𝑌 𝑖⋅ = 𝛼𝑖 + 𝑋𝑋𝑋′
𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅. (9.5)

Then, subtracting Equation 9.5 from Equation 9.3 removes the fixed effect 𝛼𝑖 from the equa-
tion:

𝑌𝑖𝑡 − 𝑌 𝑖⋅ = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢𝑖⋅).

The deviations from the individual specific means are called within transformations:

̇𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅, �̇�𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅, �̇�𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅

The within-transfromed model equation is

̇𝑌𝑖𝑡 = �̇�𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + �̇�𝑖𝑡. (9.6)

Hence, to estimate 𝛽𝛽𝛽, we regress the within-transformed dependent variable ̇𝑌𝑖𝑡 on the within-
transformed regressors �̇�𝑋𝑋𝑖𝑡 for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇 .

The within estimator is also called fixed effects estimator:

̂𝛽𝛽𝛽fe = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

�̇�𝑋𝑋𝑖𝑡�̇�𝑋𝑋
′
𝑖𝑡)

−1
(

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

�̇�𝑋𝑋𝑖𝑡 ̇𝑌𝑖𝑡).

fit.fe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "individual",
model = "within",
data=Grunfeld)

fit.fe

Model Formula: inv ~ capital

Coefficients:
capital
0.37075

Under (A2-fe), the collection of the within-transformed variables if individual 𝑖,

( ̇𝑌𝑖1, … , ̇𝑌𝑖𝑇 , �̇�𝑋𝑋𝑖1, … ,�̇�𝑋𝑋𝑖𝑇 , �̇�𝑖1, … , �̇�𝑖𝑇 ),

forms an i..i.d. sequence for 𝑖 = 1, … , 𝑛. The within-transformed variables satisfy (A1-pool)–
(A4-pool).
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Hence, we can apply the cluster-robust covariance matrix estimator of the pooled regression
to the within-transformed variables:

𝑉𝑉𝑉 fe = (�̇�𝑋𝑋′�̇�𝑋𝑋)−1
𝑁

∑
𝑖=1

(
𝑇

∑
𝑡=1

�̇�𝑋𝑋𝑖𝑡�̂�𝑖𝑡)(
𝑇

∑
𝑡=1

�̇�𝑋𝑋𝑖𝑡�̂�𝑖𝑡)
′
(�̇�𝑋𝑋′�̇�𝑋𝑋)−1,

where �̂�𝑖𝑡 now represents the residuals of ̂𝛽𝛽𝛽fe, and �̇�𝑋𝑋′�̇�𝑋𝑋 = ∑𝑁
𝑖=1 ∑𝑇

𝑡=1 �̇�𝑋𝑋𝑖𝑡�̇�𝑋𝑋
′
𝑖𝑡

## cluster-robust covariance matrix
Vfe = vcovHC(fit.fe)
Vfe

capital
capital 0.003796144
attr(,"cluster")
[1] "group"

## cluster-robust standard error
sqrt(Vfe)

capital
capital 0.06161285
attr(,"cluster")
[1] "group"

## t-test
coeftest(fit.fe, vcov. = Vfe)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
capital 0.370750 0.061613 6.0174 9.018e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.5 Time Fixed Effects

While individual-specific fixed effects allow to control for variables that are constant over
time but vary across individuals, we can also control for variables that are constant across
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individuals but vary over time. For example, if new government regulations are introduced at
a certain point in time that affect all individuals.

We denote time fixed effects by 𝜆𝑡. The time effects only regression equation is

𝑌𝑖𝑡 = 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡. (9.7)

Here, 𝑋𝑋𝑋𝑖𝑡 does not contain any variable that is the same for all individuals, because these
variables are captured by the time fixed effect.

To remove 𝜆𝑡 from the equation, we can subtract time specific means on both sides:

𝑌𝑖𝑡 − 𝑌 ⋅𝑡 = (𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡)′𝛽𝛽𝛽 + (𝑢𝑖𝑡 − 𝑢⋅𝑡).
The time specific means are

𝑌 ⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑡, 𝑋𝑋𝑋⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑡, 𝑢⋅𝑡 = 1
𝑛

𝑛
∑
𝑖=1

𝑢𝑖𝑡.

Hence, we regress 𝑌𝑖𝑡 − 𝑌 ⋅𝑡 on 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋⋅𝑡 to estimate 𝛽𝛽𝛽 in Equation 9.7.

fit.timefe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "time",
model = "within",
data=Grunfeld)

fit.timefe

Model Formula: inv ~ capital

Coefficients:
capital
0.53826

9.6 Two-way Fixed Effects

We may include both individual fixed effects and time fixed effects. The two-way fixed effects
regression equation is

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝑋𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + 𝑢𝑖𝑡. (9.8)

Note that 𝜆𝑡 and 𝛼𝑖 capture any variable that is the same for all individuals or is time constant.
Therefore, the variables in 𝑋𝑋𝑋𝑖𝑡 must vary both across individuals and over time.

We can use a combination of the different transformations to remove the fixed effects.
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• Individual specific mean:
𝑌 𝑖⋅ = 𝛼𝑖 + 𝜆 + 𝑋𝑋𝑋′

𝑖⋅𝛽𝛽𝛽 + 𝑢𝑖⋅,
where 𝜆 = 1

𝑇 ∑𝑇
𝑡=1 𝜆𝑡.

• Time specific mean:
𝑌 ⋅𝑡 = 𝛼 + 𝜆𝑡 + 𝑋𝑋𝑋′

⋅𝑡𝛽𝛽𝛽 + 𝑢⋅𝑡,
where 𝛼 = 1

𝑛 ∑𝑛
𝑖=1 𝛼𝑖.

• Total mean:

𝑌 = 1
𝑛𝑇

𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

𝑌𝑖𝑡 = 𝛼 + 𝜆 + 𝑋𝑋𝑋′𝛽𝛽𝛽 + 𝑢,

where 𝑋𝑋𝑋 = 1
𝑛𝑇 ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 𝑋𝑋𝑋𝑖𝑡 and 𝑢 = 1

𝑛𝑇 ∑𝑛
𝑖=1 ∑𝑇

𝑡=1 𝑢𝑖𝑡.

To eliminate the individual and time fixed effects in Equation 9.8, we use the two-way trans-
formation:

̈𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅ − 𝑌 ⋅𝑡 + 𝑌
�̈�𝑋𝑋𝑖𝑡 = 𝑋𝑋𝑋𝑖𝑡 − 𝑋𝑋𝑋𝑖⋅ − 𝑋𝑋𝑋⋅𝑡 + 𝑋𝑋𝑋
�̈�𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖⋅ − 𝑢⋅𝑡 + 𝑢.

Applying the two-way transformation on both sides of Equation 9.8 gives

̈𝑌𝑖𝑡 = �̈�𝑋𝑋′
𝑖𝑡𝛽𝛽𝛽 + �̈�𝑖𝑡. (9.9)

Hence, we estimate 𝛽𝛽𝛽 by regressing ̈𝑌𝑖𝑡 on �̈�𝑋𝑋𝑖𝑡.

fit.2wayfe = plm(inv ~ capital,
index = c("firm", "year"),
effect = "twoways",
model = "within",
data=Grunfeld)

fit.2wayfe

Model Formula: inv ~ capital

Coefficients:
capital
0.4138

Similarly to the pooled and fixed effects estimator, we can use the cluster-robust covariance
matrix estimator and cluster-robust standard errors.
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## cluster-robust covariance matrix
V2way = vcovHC(fit.2wayfe)
V2way

capital
capital 0.003241852
attr(,"cluster")
[1] "group"

## cluster-robust standard error
sqrt(Vfe)

capital
capital 0.06161285
attr(,"cluster")
[1] "group"

## t-test
coeftest(fit.2wayfe, vcov. = V2way)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
capital 0.413802 0.056937 7.2677 1.268e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.7 Comparison of panel models

The fixed effects estimators are asymptotically normal under assumptions (A1-fe)–(A4-fe), and
the clustered standard errors are consistent.

fit.pool1 = lm(inv~capital, data=Grunfeld)
fit.pool2 = plm(inv~capital,

index = c("firm", "year"),
model = "pooling",
data=Grunfeld)
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cluster_se = list(
sqrt(diag(vcovHC(fit.pool1))),
sqrt(diag(vcovHC(fit.pool2))),
sqrt(diag(vcovHC(fit.fe))),
sqrt(diag(vcovHC(fit.timefe))),
sqrt(diag(vcovHC(fit.2wayfe)))

)

stargazer_output = stargazer(fit.pool1, fit.pool2, fit.fe, fit.timefe, fit.2wayfe,
se = cluster_se,
add.lines=list(

c("Firm FE", "No", "No","Yes","No","Yes"),
c("Year FE", "No", "No","No","Yes","Yes"),
c("Clustered SE", "No", "Yes", "Yes", "Yes", "Yes")

),
type="latex",
omit.stat = "f", df=FALSE,
dep.var.labels="Gross Investment",
covariate.labels = "Capital Stock",
header = FALSE,
table.placement = "!h")

9.8 Dummy variable regression

An alternative way to estimate the fixed effects model is by an OLS regression of 𝑌𝑖𝑡 on 𝑋𝑋𝑋𝑖𝑡
and a full set of dummy variables, one for each individual in the sample.

For the time fixed effects model, we include a full set of dummy variables for each time point in
the sample, and for the two-way fixed effects model, we include individual and time dummies.

This approach is algebraically equivalent to the within and two-way transformations. The
coefficients for the auxiliary dummy variables are usually not reported. The coefficients for
capital are the same as in the table above:

lm(inv ~ capital + factor(firm), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(firm), data = Grunfeld)
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Table 9.1

Dependent variable:
Gross Investment

OLS panel
linear

(1) (2) (3) (4) (5)
Capital Stock 0.477∗∗∗ 0.477∗∗∗ 0.371∗∗∗ 0.538∗∗∗ 0.414∗∗∗

(0.078) (0.126) (0.062) (0.153) (0.057)

Constant 14.236 14.236
(19.393) (28.046)

Firm FE No No Yes No Yes
Year FE No No No Yes Yes
Clustered SE No Yes Yes Yes Yes
Observations 200 200 200 200 200
R2 0.439 0.439 0.660 0.429 0.599
Adjusted R2 0.436 0.436 0.642 0.365 0.530
Residual Std. Error 162.850

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Coefficients:
(Intercept) capital factor(firm)2 factor(firm)3 factor(firm)4

367.6130 0.3707 -66.4553 -413.6821 -326.4410
factor(firm)5 factor(firm)6 factor(firm)7 factor(firm)8 factor(firm)9

-486.2784 -350.8656 -436.7832 -356.4725 -436.1703
factor(firm)10

-366.7313

lm(inv ~ capital + factor(year), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(year), data = Grunfeld)

Coefficients:
(Intercept) capital factor(year)1936 factor(year)1937
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39.2068 0.5383 22.4605 27.8993
factor(year)1938 factor(year)1939 factor(year)1940 factor(year)1941

-36.6889 -42.4012 -11.4293 5.3301
factor(year)1942 factor(year)1943 factor(year)1944 factor(year)1945

-26.2522 -36.3995 -32.3887 -33.0571
factor(year)1946 factor(year)1947 factor(year)1948 factor(year)1949

-3.6307 -57.8083 -73.1115 -106.8436
factor(year)1950 factor(year)1951 factor(year)1952 factor(year)1953

-105.8753 -69.2505 -76.6097 -67.6766
factor(year)1954

-112.6339

lm(inv ~ capital + factor(firm) + factor(year), data=Grunfeld)

Call:
lm(formula = inv ~ capital + factor(firm) + factor(year), data = Grunfeld)

Coefficients:
(Intercept) capital factor(firm)2 factor(firm)3

354.9166 0.4138 -51.2329 -402.9933
factor(firm)4 factor(firm)5 factor(firm)6 factor(firm)7

-303.7443 -479.3182 -327.4387 -422.4257
factor(firm)8 factor(firm)9 factor(firm)10 factor(year)1936

-332.2429 -421.0790 -339.0705 23.9405
factor(year)1937 factor(year)1938 factor(year)1939 factor(year)1940

32.9483 -27.0935 -30.7979 0.5826
factor(year)1941 factor(year)1942 factor(year)1943 factor(year)1944

19.5836 -8.6393 -17.5675 -13.7593
factor(year)1945 factor(year)1946 factor(year)1947 factor(year)1948

-13.5253 17.6985 -27.2407 -37.4300
factor(year)1949 factor(year)1950 factor(year)1951 factor(year)1952

-66.7623 -63.2855 -23.9098 -23.9138
factor(year)1953 factor(year)1954

-5.1266 -40.1051
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9.9 Panel R-squared

We can decompose the total variation into within group variation and between group varia-
tion:

𝑌𝑖𝑡 − 𝑌 = 𝑌𝑖𝑡 − 𝑌 𝑖⋅⏟
within group

+ 𝑌 𝑖⋅ − 𝑌⏟
between group

Two different R squared versions:

• Overall R-squared:

𝑅2
𝑜𝑣 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 �̂�2

𝑖𝑡

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 )2

Interpretation: Proportion of total sample variation in 𝑌𝑖𝑡 explained by the model (the
usual R-squared).

• Within R-squared

𝑅2
𝑤𝑖𝑡 = 1 − ∑𝑛

𝑖=1 ∑𝑇
𝑡=1 �̂�2

𝑖𝑡

∑𝑛
𝑖=1 ∑𝑇

𝑡=1(𝑌𝑖𝑡 − 𝑌 𝑖⋅)2

Interpretation: Proportion of sample variation in 𝑌𝑖𝑡 within the individual units is ex-
plained by the model.

For a individual-specific fixed effects regression, consider the two equivalent fixed effects esti-
mators from above:

## plm object
fit.fe = plm(inv ~ capital,

index = c("firm", "year"),
effect = "individual",
model = "within",
data=Grunfeld)

## lm object
fit.fe.lsdv = lm(inv ~ capital + factor(firm), data=Grunfeld)

The summary(object)$r.squared function applied to the plm object returns the within R-
squared, and for the lm object it returns the overall R-squared:

## within R-squared
summary(fit.fe)$r.squared

rsq adjrsq
0.6597327 0.6417291
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## overall R-squared
summary(fit.fe.lsdv)$r.squared

[1] 0.9184098

It is not a big surprise that the fixed effects model explains a lot of the total variation in 𝑌𝑖𝑡.
The equivalent LSDV model assigns each individual its own dummy variable and therefore, by
construction, explains a lot of variation between individuals.

The within R squared is often more insightful because it reflects the model’s ability to explain
the variation within entities over time.

9.10 R-codes

methods-sec09.R
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10 Case Study II: Drunk Driving

library(AER) # for the dataset
library(plm) # panel models
library(stargazer) # regression tables

The dataset Fatalities contains panel data for traffic fatalities in the United States. Among
others, it contains variables related to traffic fatalities and alcohol, including the number of
traffic fatalities, the type of drunk driving laws and the tax on beer, reporting their values for
each state and each year.

Here we will study how effective various government policies designed to discourage drunk
driving actually are in reducing traffic deaths.

The measure of traffic deaths we use is the fatality rate, which is the annual number of traffic
fatalities per 10000 individuals within the state’s population. The measure of alcohol taxes we
use is the “real” tax on a case of beer, which is the beer tax, put into 1988 dollars by adjusting
for inflation.

Let’s take a look at the structure of the dataset first.

data(Fatalities, package = "AER")
class(Fatalities)

[1] "data.frame"

dim(Fatalities)

[1] 336 34

str(Fatalities)

Click here to view or hide str(Fatalities)
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'data.frame': 336 obs. of 34 variables:
$ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
$ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
$ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
$ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
$ income : num 10544 10733 11109 11333 11662 ...
$ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
$ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
$ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
$ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
$ drinkage : num 19 19 19 19.7 21 ...
$ dry : num 25 23 24 23.6 23.5 ...
$ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
$ miles : num 7234 7836 8263 8727 8953 ...
$ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
$ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
$ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
$ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
$ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
$ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
$ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
$ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
$ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
$ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
$ afatal : num 309 342 305 277 361 ...
$ pop : num 3942002 3960008 3988992 4021008 4049994 ...
$ pop1517 : num 209000 202000 197000 195000 204000 ...
$ pop1820 : num 221553 219125 216724 214349 212000 ...
$ pop2124 : num 290000 290000 288000 284000 263000 ...
$ milestot : num 28516 31032 32961 35091 36259 ...
$ unempus : num 9.7 9.6 7.5 7.2 7 ...
$ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
$ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...

We can see the data has been effectively defined as a data frame, with 336 observations of 34
variables. Our panel index variables are state (individual, 𝑖) and year (time, 𝑡).
It’s always good to have a quick look at the first few observations. The head() function in
R, by default, shows the first six observations (rows) of a data frame or data set. However,
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you can specify a different number of rows to display by providing the desired count as an
argument to the function if needed, like head(your_data_frame, n = 10) to display the first
10 rows.

Click here to view or hide head(Fatalities)

# list the first few observations
head(Fatalities)

state year spirits unemp income emppop beertax baptist mormon drinkage
1 al 1982 1.37 14.4 10544.15 50.69204 1.539379 30.3557 0.32829 19.00
2 al 1983 1.36 13.7 10732.80 52.14703 1.788991 30.3336 0.34341 19.00
3 al 1984 1.32 11.1 11108.79 54.16809 1.714286 30.3115 0.35924 19.00
4 al 1985 1.28 8.9 11332.63 55.27114 1.652542 30.2895 0.37579 19.67
5 al 1986 1.23 9.8 11661.51 56.51450 1.609907 30.2674 0.39311 21.00
6 al 1987 1.18 7.8 11944.00 57.50988 1.560000 30.2453 0.41123 21.00

dry youngdrivers miles breath jail service fatal nfatal sfatal
1 25.0063 0.211572 7233.887 no no no 839 146 99
2 22.9942 0.210768 7836.348 no no no 930 154 98
3 24.0426 0.211484 8262.990 no no no 932 165 94
4 23.6339 0.211140 8726.917 no no no 882 146 98
5 23.4647 0.213400 8952.854 no no no 1081 172 119
6 23.7924 0.215527 9166.302 no no no 1110 181 114
fatal1517 nfatal1517 fatal1820 nfatal1820 fatal2124 nfatal2124 afatal

1 53 9 99 34 120 32 309.438
2 71 8 108 26 124 35 341.834
3 49 7 103 25 118 34 304.872
4 66 9 100 23 114 45 276.742
5 82 10 120 23 119 29 360.716
6 94 11 127 31 138 30 368.421

pop pop1517 pop1820 pop2124 milestot unempus emppopus gsp
1 3942002 208999.6 221553.4 290000.1 28516 9.7 57.8 -0.02212476
2 3960008 202000.1 219125.5 290000.2 31032 9.6 57.9 0.04655825
3 3988992 197000.0 216724.1 288000.2 32961 7.5 59.5 0.06279784
4 4021008 194999.7 214349.0 284000.3 35091 7.2 60.1 0.02748997
5 4049994 203999.9 212000.0 263000.3 36259 7.0 60.7 0.03214295
6 4082999 204999.8 208998.5 258999.8 37426 6.2 61.5 0.04897637
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# summarize the variables 'state' and 'year'
summary(Fatalities[, c("state", "year")])

state year
al : 7 1982:48
az : 7 1983:48
ar : 7 1984:48
ca : 7 1985:48
co : 7 1986:48
ct : 7 1987:48
(Other):294 1988:48

Notice that the variable state is a factor variable with 48 levels (one for each of the 48
contiguous federal states of the U.S.). The variable year is also a factor variable that has 7
levels identifying the time period when the observation was made. This gives us 7 × 48 = 336
observations in total.

Since all variables are observed for all entities (states) and over all time periods, the panel is
balanced. If there were missing data for at least one entity in at least one time period we would
call the panel unbalanced.

10.1 Cross-sectional Regression

Let’s start by estimating simple regressions using data for years 1982 and 1988 that model
the relationship between the beer tax (adjusted for 1988 dollars) and the traffic fatality rate,
measured as the number of fatalities per 10000 inhabitants. Afterwards, we plot the data and
add the corresponding estimated regression functions.

# define the fatality rate
Fatalities$fatal_rate = Fatalities$fatal / Fatalities$pop * 10000

# subset the data
Fatalities1982 = Fatalities |> subset(year == "1982")
Fatalities1988 = Fatalities |> subset(year == "1988")

# estimate simple regression models using 1982 and 1988 data
fatal1982_mod = lm(fatal_rate ~ beertax, data = Fatalities1982)
fatal1988_mod = lm(fatal_rate ~ beertax, data = Fatalities1988)

coeftest(fatal1982_mod, vcov. = vcovHC)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.01038 0.15278 13.1586 <2e-16 ***
beertax 0.14846 0.14500 1.0238 0.3113
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(fatal1988_mod, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.85907 0.11786 15.7731 < 2.2e-16 ***
beertax 0.43875 0.14224 3.0847 0.003443 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression functions are

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = 2.01
(0.15)

+ 0.15
(0.15)

𝐵𝑒𝑒𝑟𝑇 𝑎𝑥 (1982 data)

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = 1.86
(0.12)

+ 0.44
(0.14)

𝐵𝑒𝑒𝑟𝑇 𝑎𝑥 (1988 data)

par(mfrow = c(1,2))
plot(fatal_rate~beertax, data = Fatalities1982,

xlab = "Beer tax (in 1988 USD)", ylab = "Fatality rate (per 10000)",
main = "1982", ylim = c(1, 4.2),
pch = 20, col = "steelblue")

abline(fatal1982_mod, lwd = 1.5, col="darkred")
plot(fatal_rate~beertax, data = Fatalities1988,

xlab = "Beer tax (in 1988 USD)", ylab = "Fatality rate (per 10000)",
main = "1988", ylim = c(1, 4.2),
pch = 20, col = "steelblue")

abline(fatal1988_mod, lwd = 1.5, col="darkred")
legend("bottomright",lty=1,col="darkred","Regression fit", cex = 0.8)
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Regression fit

In both plots, each point represents observations of beer tax and fatality rate for a given state
in the respective year. The regression results indicate a positive relationship between the beer
tax and the fatality rate for both years.

The estimated coefficient on beer tax for the 1988 data is almost three times as large as for
the 1982 dataset. This is contrary to our expectations: alcohol taxes are supposed to lower
the rate of traffic fatalities. This is possibly due to omitted variable bias, since none of the
models include any covariates, e.g., economic conditions.

Panel data methods could help here to account for omitted unobservable factors that vary from
state to state but can be assumed to be constant over the observation period (e.g., attitudes
toward drunk driving, road quality, density of cars on the road) and factors that vary from
year to year but can be assumed to be constant for all states in a given year (e.g., changing
national attitudes toward drunk driving, improvements in car safety over time).

10.2 “Before and After” Comparisons

Let’s suppose there are only 𝑇 = 2 time periods 𝑡 = 1982, 1988. This allows us to analyze
differences in changes of the fatality rate from year 1982 to 1988. We start by considering the
population regression model:

FatalityRate𝑖𝑡 = 𝛽0 + 𝛽1BeerTax𝑖𝑡 + 𝛽2𝑍𝑖 + 𝑢𝑖𝑡

where the 𝑍𝑖 are state specific characteristics that differ between states but are constant over
time. For 𝑡 = 1982 and 𝑡 = 1988 we have
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𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1982 = 𝛽0 + 𝛽1BeerTax𝑖,1982 + 𝛽2𝑍𝑖 + 𝑢𝑖,1982,
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1988 = 𝛽0 + 𝛽1BeerTax𝑖,1988 + 𝛽2𝑍𝑖 + 𝑢𝑖,1988.

We can eliminate the 𝑍𝑖 by regressing the difference in the fatality rate between 1988 and 1982
on the difference in beer tax between those years:

FatalityRate𝑖,1988 − FatalityRate𝑖,1982
= 𝛽1(BeerTax𝑖,1988 − BeerTax𝑖,1982) + 𝑢𝑖,1988 − 𝑢𝑖,1982

This regression model, where the difference in fatality rate between 1988 and 1982 is regressed
on the difference in beer tax between those years, yields an estimate for 𝛽1 that is robust to a
possible bias due to omission of 𝑍𝑖, as these influences are eliminated from the model. Next
we will estimate a regression based on the differenced data and plot the estimated regression
function.

# compute the differences
diff_fatal_rate = Fatalities1988$fatal_rate - Fatalities1982$fatal_rate
diff_beertax = Fatalities1988$beertax - Fatalities1982$beertax

# estimate a regression using differenced data
fatal_diff_mod = lm(diff_fatal_rate ~ diff_beertax)
coeftest(fatal_diff_mod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072037 0.067854 -1.0616 0.29394
diff_beertax -1.040973 0.408288 -2.5496 0.01418 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Including the intercept allows for a change in the mean fatality rate in the time between 1982
and 1988 in the absence of a change in the beer tax.

We obtain the OLS estimated regression function
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̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1988 − 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1982
= −0.072

(−0.07)
− 1.04

(0.41)
(𝐵𝑒𝑒𝑟𝑇 𝑎𝑥𝑖,1988 − 𝐵𝑒𝑒𝑟𝑇 𝑎𝑥𝑖,1982)

plot(diff_fatal_rate ~ diff_beertax,
xlab = "Change in beer tax (in 1988 USD)",
ylab = "Change in fatality rate (per 10000)",
main = "Changes in Traffic Fatality Rates and Beer Taxes in 1982-1988",
ylim = c(-1.5, 1), cex.main=1,
pch = 20, col = "steelblue")

abline(fatal_diff_mod, lwd = 1.5,col="darkred") # add the regression line to plot
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The estimated coefficient on beer tax is now negative and significantly different from zero at
the 5% significance level. Its interpretation is that raising the beer tax by $1 is associated
with an average decrease of 1.04 fatalities per 10000 inhabitants. This is rather large as the
average fatality rate is approximately 2 persons per 10000 inhabitants.
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# mean fatality rate over all states and time periods
mean(Fatalities$fatal_rate)

[1] 2.040444

The outcome we obtained is likely to be a consequence of omitting factors in the single-year
regression that influence the fatality rate and are correlated with the beer tax and change
over time. The message is that we need to be more careful and control for such factors before
drawing conclusions about the effect of a raise in beer taxes.

The approach presented in this section discards information for years 1983 to 1987. The fixed
effects method allows us to use data for more than 𝑇 = 2 time periods and enables us to add
control variables to the analysis.

10.3 State Fixed Effects

To estimate the relation between traffic fatality rates and beer taxes, the simple fixed effects
model is

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖𝑡 = 𝛼𝑖 + 𝛽1𝐵𝑒𝑒𝑟𝑇 𝑎𝑥𝑖𝑡 + 𝑢𝑖𝑡 (10.1)

a regression of the traffic fatality rate on beer tax and 48 binary regressors (one for each federal
state). In this model, we are using a fixed effects approach to account for the effect of each
federal state. 𝛼𝑖 represents the state fixed effect. Including a fixed effect for each state means
that we’re estimating separate intercepts (or constant terms) for each state.

fatal_fe = plm(fatal_rate ~ beertax,
index = c("state", "year"),
effect = "individual",
model = "within",
data = Fatalities)

coeftest(fatal_fe, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
beertax -0.65587 0.28837 -2.2744 0.02368 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The estimated coefficient is again −0.6559. The estimated regression function is

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = −0.66
(0.29)

𝐵𝑒𝑒𝑟𝑇 𝑎𝑥 + 𝑆𝑡𝑎𝑡𝑒𝐹𝐸 (10.2)

The coefficient on 𝐵𝑒𝑒𝑟𝑇 𝑎𝑥 is negative and statistically significant at the 5% level. Its inter-
pretation is that states with a $1 higher beer tax have, on average, 0.66 fewer traffic fatalities
per 10000 people, given the same state-specific time-constant characteristics.

Although including state fixed effects eliminates the risk of bias due to omitted factors that
vary across states but not over time, we suspect that there are other omitted variables that
vary over time, making it difficult to interpret the coefficient as a causal effect.

If you prefer the lm() function, you can also use the following command:

fatal_fe_lm = lm(fatal_rate ~ beertax + factor(state) - 1, data = Fatalities)

The -1 term tells R to exclude the intercept term that it would normally include by default.
By doing this, we’re essentially saying that we don’t want to estimate an overall intercept
for the model because we are already capturing the state-specific effects. This is a common
practice in fixed effects models to avoid multicollinearity between the state-specific intercepts
and the predictors.

While fatal_fe_lm and fatal_fe return the same coefficient estimate, vcovHC(fatal_fe_lm)
returns the HC3 heteroskedasticity-robust covariance matrix and vcovHC(fatal_fe) returns
the cluster-robust covariance matrix. The reason is that fatal_fe_lm is an lm object and
fatal_fe is a plm object. Cluster-robust standard errors should be preferred due to the
autocorrelation structure within each cluster (state).

10.4 Year Fixed Effects

Controlling for variables that are constant across entities but vary over time can be done by
including time fixed effects. If there are only time fixed effects, the fixed effects regression
model becomes

𝑌𝑖𝑡 = 𝜆𝑡 + 𝛽1𝑋𝑖𝑡 + 𝑢𝑖𝑡

In some applications it is meaningful to include both entity (state) and time fixed effects. The
two-way fixed effects model is

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛽1𝑋𝑖𝑡 + 𝑢𝑖𝑡
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The combined model allows to eliminate bias from unobservables that change over time but
are constant over entities and it controls for factors that differ across entities but are constant
over time.

Let’s estimate the combined entity and time fixed effects model of the relation between fatalities
and beer tax,

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖𝑡 = 𝛽1𝐵𝑒𝑒𝑟𝑇 𝑎𝑥𝑖𝑡 + 𝑆𝑡𝑎𝑡𝑒𝐹𝐸𝑖 + 𝑇 𝑖𝑚𝑒𝐹𝐸𝑡 + 𝑢𝑖𝑡

fatal_twoway = plm(fatal_rate ~ beertax,
index = c("state", "year"),
effect = "twoways",
model = "within",
data = Fatalities)

coeftest(fatal_twoway, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
beertax -0.63998 0.34963 -1.8305 0.06824 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = −0.64
(0.35)

𝐵𝑒𝑒𝑟𝑇 𝑎𝑥 + 𝑆𝑡𝑎𝑡𝑒𝐹𝐸 + 𝑇 𝑖𝑚𝑒𝐹𝐸 (10.3)

The result is close to the estimated coefficient for the regression model including only entity
fixed effects, which was −0.66. Unsurprisingly, the coefficient is less precisely estimated, as
we observe a slightly higher cluster-robust standard error for this new coefficient of −0.64.
Nevertheless, it is still significantly different from zero at the 10% level.

We conclude that the estimated relationship between traffic fatalities and the real beer tax is
not affected by omitted variable bias due to factors that are constant either over time or across
states.
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10.5 Driving Laws and Economic Conditions

There are two major sources of omitted variable bias that are not accounted for by all of the
models of the relation between traffic fatalities and beer taxes that we have considered so far:
economic conditions and driving laws.

Fortunately, Fatalities has data on state-specific legal drinking age (drinkage), punishment
(jail, service) and various economic indicators like unemployment rate (unemp) and per
capita income (income). We may use these covariates to extend the preceding analysis.

These covariates are defined as follows:

• unemp: a numeric variable stating the state specific unemployment rate.
• log(income): the logarithm of real per capita income (in 1988 dollars).
• miles: the state average miles per driver.
• drinkage: the state specific minimum legal drinking age.
• drinkagec: a discretized version of drinkage that classifies states into four categories

of minimal drinking age; 18, 19, 20, 21 and older. R denotes this as [18,19), [19,20),
[20,21) and [21,22]. These categories are included as dummy regressors where
[21,22] is chosen as the reference category.

• punish: a dummy variable with levels yes and no that measures if drunk driving is
severely punished by mandatory jail time or mandatory community service (first convic-
tion).

First, we define some relevant variables to include in our following regression models:

# discretize the minimum legal drinking age
Fatalities$drinkagec = factor(floor(Fatalities$drinkage))

# dummy for mandatory jail or community service
Fatalities$punish = ifelse(
Fatalities$jail == "yes" | Fatalities$service == "yes",
"yes", "no")

Next, we estimate six regression models using plm().

# estimate six models
fat_mod1 = plm(fatal_rate ~ beertax,

index = c("state", "year"),
model = "pooling",
data = Fatalities)

fat_mod2 = plm(fatal_rate ~ beertax,
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index = c("state", "year"),
effect = "individual",
model = "within",
data = Fatalities)

fat_mod3 = plm(fatal_rate ~ beertax,
index = c("state", "year"),
effect = "twoways",
model = "within",
data = Fatalities)

fat_mod4 = plm(fatal_rate ~ beertax
+ drinkagec + punish + miles + unemp + log(income),
index = c("state", "year"),
effect = "twoways",
model = "within",
data = Fatalities)

fat_mod5 = plm(fatal_rate ~ beertax
+ drinkagec + punish + miles,
index = c("state", "year"),
effect = "twoways",
model = "within",
data = Fatalities)

fat_mod6 = plm(fatal_rate ~ beertax
+ drinkage + punish + miles + unemp + log(income),
index = c("state", "year"),
effect = "twoways",
model = "within",
data = Fatalities)

We use stargazer() to generate a comprehensive tabular presentation of the results.

# gather clustered standard errors in a list
rob_se = list(sqrt(diag(vcovHC(fat_mod1))),

sqrt(diag(vcovHC(fat_mod2))),
sqrt(diag(vcovHC(fat_mod3))),
sqrt(diag(vcovHC(fat_mod4))),
sqrt(diag(vcovHC(fat_mod5))),
sqrt(diag(vcovHC(fat_mod6))))
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stargazer(fat_mod1, fat_mod2, fat_mod3, fat_mod4, fat_mod5, fat_mod6,
se = rob_se,
type="latex",
omit.stat = c("f", "rsq", "adj.rsq"),
add.lines=list(

c("State FE","no","yes","yes","yes","yes","yes"),
c("Year FE","no","no","yes","yes","yes","yes"),
c("Clustered SE","yes","yes","yes","yes","yes","yes"))

)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail:
marek.hlavac at gmail.com % Date and time: Do, Aug 22, 2024 - 16:08:58

While columns 2 and 3 recap the results of the regressions of Equation 10.1 and Equation 10.2,
column 1 presents an estimate of the coefficient of interest in the naive OLS regression of the
fatality rate on beer tax without any fixed effects. There we obtain a positive estimate for the
coefficient on beer tax that is likely to be upward biased.

The sign of the estimate changes as we extend the model by both entity and time fixed effects
in models 2 and 3. Nonetheless, as discussed before, the magnitudes of both estimates may be
too large.

The model specifications 4 to 6 include covariates that shall capture the effect of overall state
economic conditions as well as the legal framework. Nevertheless, considering model 4 as the
baseline specification including covariates, we observe four interesting results:

1. Including these covariates is not leading to a major reduction of the estimated effect of the
beer tax. The coefficient is not significantly different from zero at the 10% level, which means
that it is considered imprecise.

2. According to this regression model, the minimum legal drinking age is not associated with
an effect on traffic fatalities: none of the three dummy variables are significantly different from
zero at any common level of significance. Moreover, an 𝐹 -Test of the joint hypothesis that all
three coefficients are zero does not reject the null hypothesis. The next code chunk shows how
to test this hypothesis:

# test if legal drinking age has no explanatory power (Wald test)
linearHypothesis(fat_mod4,

c("drinkagec19", "drinkagec20", "drinkagec21"),
vcov. = vcovHC)

Linear hypothesis test

Hypothesis:
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Table 10.1

Dependent variable:
fatal_rate

(1) (2) (3) (4) (5) (6)
beertax 0.365∗∗∗ −0.656∗∗ −0.640∗ −0.445 −0.690∗∗ −0.456

(0.118) (0.288) (0.350) (0.288) (0.342) (0.298)

drinkagec19 −0.046 −0.065
(0.057) (0.064)

drinkagec20 0.004 −0.090
(0.065) (0.075)

drinkagec21 −0.028 0.010
(0.068) (0.080)

drinkage −0.002
(0.021)

punishyes 0.038 0.085 0.039
(0.100) (0.108) (0.100)

miles 0.00001 0.00002∗ 0.00001
(0.00001) (0.00001) (0.00001)

unemp −0.063∗∗∗ −0.063∗∗∗

(0.013) (0.013)

log(income) 1.816∗∗∗ 1.786∗∗∗

(0.616) (0.625)

Constant 1.853∗∗∗

(0.117)

State FE no yes yes yes yes yes
Year FE no no yes yes yes yes
Clustered SE yes yes yes yes yes yes
Observations 336 336 336 335 335 335

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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drinkagec19 = 0
drinkagec20 = 0
drinkagec21 = 0

Model 1: restricted model
Model 2: fatal_rate ~ beertax + drinkagec + punish + miles + unemp + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 276
2 273 3 1.1345 0.7688

3. There is no statistical evidence indicating an association between punishment for first
offenders and drunk driving: the corresponding coefficient is not significant at the 10% level.

4. The coefficients on the economic variables representing employment rate and income per
capita indicate an statistically significant association between these and traffic fatalities. We
can check that the employment rate and income per capita coefficients are jointly significant
at the 0.1% level.

# test if economic indicators have no explanatory power
linearHypothesis(fat_mod4,

c("log(income)", "unemp"),
vcov. = vcovHC)

Linear hypothesis test

Hypothesis:
log(income) = 0
unemp = 0

Model 1: restricted model
Model 2: fatal_rate ~ beertax + drinkagec + punish + miles + unemp + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 275
2 273 2 63.155 1.932e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model 5 omits the economic factors. The result supports the notion that economic indicators
should remain in the model as the coefficient on beer tax is sensitive to the inclusion of the
latter.

Results for model 6 show that the legal drinking age has little explanatory power and that the
coefficient of interest is not sensitive to changes in the functional form of the relation between
drinking age and traffic fatalities.

10.6 Summary

We have not found statistical evidence to state that severe punishments and an increase in the
minimum drinking age could lead to a reduction of traffic fatalities due to drunk driving.

Nonetheless, there seems to be a negative effect of alcohol taxes on traffic fatalities according
to our model estimate. However, this estimate is not precise and cannot be interpreted as the
causal effect of interest, as there still may be a bias.

There may be omitted variables that differ across states and change over time, and this bias
remains even though we use a panel approach that controls for entity specific and time invariant
unobservables.

10.7 R-codes

methods-sec10.R
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11 Shrinkage Estimation

Shrinkage estimation is a highly valuable technique in the context of high-dimensional regres-
sion analysis. It allows for the estimation of regression models with more regressors than
observations.

11.1 Mean squared error

The key measure of estimation accuracy is the mean squared error (MSE). The MSE of
an estimator ̂𝜃 for a parameter 𝜃 is

𝑚𝑠𝑒( ̂𝜃) = 𝐸[( ̂𝜃 − 𝜃)2].

The MSE can be decomposed into the variance plus squared bias:

𝑚𝑠𝑒( ̂𝜃) = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+ (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝑏𝑖𝑎𝑠( ̂𝜃)2

Proof. Subtracting and adding 𝐸[ ̂𝜃] gives

( ̂𝜃 − 𝜃)2 = ( ̂𝜃 − 𝐸[ ̂𝜃] + 𝐸[ ̂𝜃] − 𝜃)2

= ( ̂𝜃 − 𝐸[ ̂𝜃])2 + 2( ̂𝜃 − 𝐸[ ̂𝜃])(𝐸[ ̂𝜃] − 𝜃⏟
𝑏𝑖𝑎𝑠( ̂𝜃)

) + (𝐸[ ̂𝜃] − 𝜃)2⏟⏟⏟⏟⏟
=𝑏𝑖𝑎𝑠( ̂𝜃)2

.

The middle term is zero after taking the expectation:

𝐸[( ̂𝜃 − 𝜃)2] = 𝐸[( ̂𝜃 − 𝐸[ ̂𝜃])2]⏟⏟⏟⏟⏟⏟⏟
=𝑉 𝑎𝑟[ ̂𝜃]

+2 𝐸[ ̂𝜃 − 𝐸[ ̂𝜃]]⏟⏟⏟⏟⏟
=0

𝑏𝑖𝑎𝑠( ̂𝜃) + 𝑏𝑖𝑎𝑠( ̂𝜃)2.

□
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For instance, consider an i.i.d. sample 𝑋1, … , 𝑋𝑛 with population mean 𝐸[𝑋𝑖] = 𝜇 and
variance 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2. Let’s study the sample mean

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

as an estimator of 𝜇. You will find that

𝐸[ ̂𝜇] = 𝜇, 𝑉 𝑎𝑟[ ̂𝜇] = 𝜎2

𝑛 .

Proof. By the linearity of the expectation, we have

𝐸[ ̂𝜇] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑋𝑖]⏟
𝜇

= 𝜇.

The independence of 𝑋1, … , 𝑋𝑛 implies

𝑉 𝑎𝑟[ ̂𝜇] = 1
𝑛2 𝑉 𝑎𝑟[

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2

𝑛

□

The sample mean is unbiased for 𝜇, i.e., 𝑏𝑖𝑎𝑠( ̂𝜇) = 𝐸[ ̂𝜇] − 𝜇 = 0. The MSE equals its
variance:

𝑚𝑠𝑒( ̂𝜇) = 𝜎2

𝑛 .

The sample mean is the best unbiased estimator for the population mean in the MSE sense,
but there exists estimators with a lower MSE if we allow for a small bias.

11.2 A simple shrinkage estimator

Let us shrink our sample mean a bit towards 0 and define the alternative estimator

̃𝜇 = (1 − 𝑤) ̂𝜇, 𝑤 ∈ [0, 1].

Setting the shrinkage weight to 𝑤 = 0 gives ̃𝜇 = ̂𝜇 (no shrinkage) and 𝑤 = 1 gives ̃𝜇 = 0 (full
shrinkage). Our shrinkage estimator has the bias

𝑏𝑖𝑎𝑠( ̃𝜇) = 𝐸[(1 − 𝑤) ̂𝜇] − 𝜇 = (1 − 𝑤) 𝐸[ ̂𝜇]⏟
=𝜇

−𝜇 = −𝑤𝜇.
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The variance is

𝑉 𝑎𝑟[ ̃𝜇] = 𝑉 𝑎𝑟[(1 − 𝑤) ̂𝜇] = (1 − 𝑤)2𝑉 𝑎𝑟[ ̂𝜇] = (1 − 𝑤)2 𝜎2

𝑛 ,

and the MSE is
𝑚𝑠𝑒( ̃𝜇) = 𝑉 𝑎𝑟[ ̃𝜇] + 𝑏𝑖𝑎𝑠( ̃𝜇)2 = (1 − 𝑤)2 𝜎2

𝑛 + 𝑤2𝜇2.

The optimal weight in terms of the MSE is

𝑤∗ = 1
1 + 𝑛𝜇2/𝜎2

Proof. We take the derivative of 𝑚𝑠𝑒( ̃𝜇) across 𝑤 to obtain the first order condition:

−2(1 − 𝑤)𝜎2/𝑛 + 2𝑤𝜇2 = 0.

Solving for 𝑤 gives 𝑤(1 + 𝑛𝜇2/𝜎2) = 1. Then, 𝑤∗ is the global minimum because the second
derivative is 2𝜎2/𝑛 + 2𝜇2 > 0. □

For instance, if 𝜇 = 1, 𝜎2 = 1, and 𝑛 = 99, we have 𝑤∗ = 0.01.

The shrinked sample mean

̃𝜇∗ = (1 − 𝑤∗) ̂𝜇 = 𝑛𝜇2/𝜎2

1 + 𝑛𝜇2/𝜎2
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

has a lower MSE than the usual sample mean:

𝑚𝑠𝑒( ̃𝜇∗) = (1 − 𝑤∗)𝜎2

𝑛 + 𝑤2𝜇2 < 𝜎2

𝑛 = 𝑚𝑠𝑒( ̂𝜇)

This is a remarkable result because it tells us that the sample mean is not the best we can do
to estimate a population mean. The shrinked estimator is more efficient. Is biased, but the
biased vanishes asymptotically since lim𝑛→∞ 𝑤∗ = 0.

The optimal shrinkage parameter 𝑤∗ is infeasible because we do not know 𝜇2/𝜎2. It is not
very useful for empirical practice, and taking sample means is still recommended.

However, the shrinkage principle can be very useful in the context of high-dimensional regres-
sion.
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11.3 High-dimensional regression

Least squares regression works well when the number of regressors 𝑘 is small relative to the
number of observations 𝑛. In a previous section on “too many regressors”, we discussed how
ordinary least squares (OLS) can overfit when 𝑘 is too large compared to 𝑛. Specifically, if
𝑘 = 𝑛, the OLS regression line perfectly fits the data.

Many economic applications involve categorical variables that are transformed into a large
number of dummy variables. If we include pairwise interaction terms among 𝐽 variables, we
get another ∑𝐽−1

𝑖=1 𝑖 = 𝐽(𝐽 −1)/2 regressors (for example, 190 for J=20 and 4950 for J=100).

Accounting for further nonlinearities by adding squared and cubic terms or higher-order inter-
actions can result in thousands or even millions of regressors. Many of these regressors may
provide low informational value, but it is difficult to determine a priori which are relevant and
which are irrelevant.

If 𝑘 > 𝑛, the OLS estimator is not uniquely defined because 𝑋𝑋𝑋′𝑋𝑋𝑋 does not have full rank. If
𝑘 ≈ 𝑛 the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 can be near singular, resulting in numerically unstable OLS coefficients
or high variance.

For the vector-valued (𝑘-variate) estimator ̂𝛽𝛽𝛽𝑜𝑙𝑠 the (conditional) MSE is

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)′( ̂𝛽𝛽𝛽𝑜𝑙𝑠 − 𝛽𝛽𝛽)|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] + 𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)(𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋))′,

where, under random sampling, OLS is unbiased:

𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝐸[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] − 𝛽𝛽𝛽 = 000.

Consequently, the MSE of OLS equals its variance:

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋) = 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

11.4 Ridge Regression

To avoid that (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 becomes very large or undefined for large 𝑘, we can introduce a shrink-
age parameter 𝜆 and define the ridge regression estimator

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝑌𝑌𝑌 . (11.1)

This estimator is well defined and does not suffer from multicollinearity problems, even if
𝑘 > 𝑛. The inverse (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1 exists as long as 𝜆 > 0. For 𝜆 = 0, the ridge estimator
coincides with the OLS estimator.
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While the OLS estimator is motivated from the minimization problem

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽),

the ridge estimator is the minimizer of

min
𝛽𝛽𝛽

(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽. (11.2)

The minimization problem introduces a penalty for large values of 𝛽𝛽𝛽. The solution is then
shrunk towards zero by 𝜆 > 0.

11.5 Standardization

The regressors and dependent variables are typically standardized:

𝑋𝑖𝑗 = 𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗

√ 1
𝑛−1 ∑𝑛

𝑖=1(𝑋𝑖𝑗 − 𝑋𝑋𝑋𝑗)2
, 𝑋𝑋𝑋𝑗 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑗

It is common practice to standardize the regressors (and dependent variable) in ridge regres-
sion.

Without standardization, variables with larger scales (i.e., larger variances) will disproportion-
ately influence the penalty term through 𝜆𝛽𝛽𝛽′𝛽𝛽𝛽 = 𝜆 ∑𝑛

𝑗=1 𝛽2
𝑗 . Variables with smaller variance

may be under-penalized, while those with larger variance may be over-penalized.

Standardization ensures that each variable contributes equally to the penalty term, making
the penalty independent of the scale of the variables.

Standardizing makes the coefficient estimates more interpretable, as they will all be on the
same scale, which helps in understanding the relative importance of each variable.

11.6 Ridge Properties

The bias of the ridge estimator is

𝑏𝑖𝑎𝑠( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) = −𝜆(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝛽𝛽𝛽,

and the covariance matrix is

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋 + 𝜆𝐼𝐼𝐼𝑘)−1.
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In the homoskedastic linear regression model, we have

𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒|𝑋𝑋𝑋) < 𝑚𝑠𝑒( ̂𝛽𝛽𝛽𝑜𝑙𝑠|𝑋𝑋𝑋)

if 0 < 𝜆 < 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽.

Similarly to the sample mean case, the upper bound 2𝜎2/𝛽𝛽𝛽′𝛽𝛽𝛽 does not give practical guidance
for selecting 𝜆 because 𝛽𝛽𝛽 and 𝜎2 are unknown.

11.7 Mean squared prediction error

The optimal value for 𝜆 minimizes the MSE, but estimating the MSE of the ridge estimator
is not straightforward because it depends on the parameter 𝛽𝛽𝛽 being estimated. Instead, it is
better to focus on the out-of-sample mean squared prediction error (MSPE).

Let (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛) be our data set (in-sample observations) with ridge estimator Equa-
tion 11.1, and let (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) be another observation pair (out-of-sample observation) that is
independently drawn from the same population as (𝑌1,𝑋𝑋𝑋1), … , (𝑌𝑛,𝑋𝑋𝑋𝑛).
The mean squared prediction error (MSPE) is

𝑀𝑆𝑃𝐸( ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒) = 𝐸[(𝑌 𝑜𝑜𝑠 − (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒)2].

Note that (𝑌 𝑜𝑜𝑠,𝑋𝑋𝑋𝑜𝑜𝑠) is independent of ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 because it has not been used for estimation.
𝑌 (𝑋𝑋𝑋𝑜𝑜𝑠) = (𝑋𝑋𝑋𝑜𝑜𝑠)′ ̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 is the predicted value of 𝑌 𝑜𝑜𝑠.

To estimate the MSPE, we can use a split sample.

1) We divide our observations randomly into a training sample (in-sample) of size 𝑛𝑡𝑟𝑎𝑖𝑛
and a testing sample (out-of-sample) of size 𝑛𝑡𝑒𝑠𝑡 with 𝑛 = 𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡:

(𝑌 𝑖𝑛𝑠
1 ,𝑋𝑋𝑋𝑖𝑛𝑠

1 ), … (𝑌 𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

,𝑋𝑋𝑋𝑖𝑛𝑠
𝑛𝑡𝑟𝑎𝑖𝑛

), (𝑌 𝑜𝑜𝑠
1 ,𝑋𝑋𝑋𝑜𝑜𝑠

1 ), … (𝑌 𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

,𝑋𝑋𝑋𝑜𝑜𝑠
𝑛𝑡𝑒𝑠𝑡

)

2) We estimate 𝛽𝛽𝛽 using the training sample:

̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒 = (

𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 (𝑋𝑋𝑋𝑖𝑛𝑠

𝑖 )′ + 𝜆𝐼𝐼𝐼𝑘)
−1 𝑛𝑡𝑟𝑎𝑖𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑛𝑠
𝑖 𝑌 𝑖𝑛𝑠

𝑖 .

3) We evaluate the empirical MSPE using the testing sample,

𝑀𝑆𝑃𝐸𝑠𝑝𝑙𝑖𝑡 = 1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡

∑
𝑖=1

(𝑌 𝑜𝑜𝑠
𝑖 − (𝑋𝑋𝑋𝑜𝑜𝑠

𝑖 )′ ̂𝛽𝛽𝛽
𝑖𝑛𝑠
𝑟𝑖𝑑𝑔𝑒)

2
(11.3)

Steps 2 and 3 are repeated for different values for 𝜆. We select the value for 𝜆 that gives the
smallest estimated MSPE.

142



11.8 Cross validation

A problem with the split sample estimator is that it highly depends on the choice of the two
subsamples. An alternative is to select 𝑚 subsamples (folds) and evaluate the MSPE using
each fold separately:

m-fold cross validation

1) Divide the sample into 𝑗 = 1, … , 𝑚 randomly chosen folds/subsamples of approximately
equal size:

(𝑌 (1)
1 ,𝑋𝑋𝑋(1)

1 ), … , (𝑌 (1)
𝑛1 ,𝑋𝑋𝑋(1)

𝑛1 )
(𝑌 (2)

1 ,𝑋𝑋𝑋(2)
1 ), … , (𝑌 (2)

𝑛2 ,𝑋𝑋𝑋(2)
𝑛2 )

⋮
(𝑌 (𝑚)

1 ,𝑋𝑋𝑋(𝑚)
1 ), … , (𝑌 (𝑚)

𝑛𝑚 ,𝑋𝑋𝑋(𝑚)
𝑛𝑚 )

2) Select 𝑗 ∈ {1, … , 𝑚} as left-out test sample and use the other subsamples to compute
the ridge estimator ̂𝛽𝛽𝛽

(−𝑗)
𝑟𝑖𝑑𝑔𝑒, where the 𝑗-th fold is not used.

3) Compute Equation 11.3 using the j-th folds as a test sample, i.e.,

𝑀𝑆𝑃𝐸𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

(𝑌 (𝑗)
𝑖 − (𝑋𝑋𝑋(𝑗)

𝑖 )′ ̂𝛽𝛽𝛽
(−𝑗)
𝑟𝑖𝑑𝑔𝑒)

2

4) The m-fold cross validation estimator is the weighted average over the m subsample
estimates of the MSPE:

𝑀𝑆𝑃𝐸𝑚𝑓𝑜𝑙𝑑 =
𝑚

∑
𝑗=1

𝑛𝑗
𝑛 𝑀𝑆𝑃𝐸𝑗,

where 𝑛 = ∑𝑚
𝑗=1 𝑛𝑗 is the total number of observations.

5) Repeat these steps over a grid of tuning parameters for 𝜆, and select the value for 𝜆 that
minimizes 𝑀𝑆𝑃 𝐸𝑚𝑓𝑜𝑙𝑑.

Common values for 𝑚 are 𝑚 = 5 and 𝑚 = 10. The larger m, the less biased the estimation of
the MSPE is, but also the more computationally expensive the cross validation becomes.

The largest possible value for m is 𝑚 = 𝑛, where each observation represents a fold. This
is also known as leave-one-out cross validation (LOOVC). LOOVC might be useful for small
datasets but is often infeasible for large dataset because of the large computation time.
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11.9 L2 Regularization: Ridge

The ℓ𝑝-norm of a vector 𝑎𝑎𝑎 = (𝑎1, … , 𝑎𝑘)′ is defined as

‖𝑎𝑎𝑎‖𝑝 = (
𝑘

∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

.

Important special cases are the ℓ1-norm and ℓ2-norm:

‖𝑎𝑎𝑎‖1 =
𝑘

∑
𝑗=1

|𝑎𝑗|, ‖𝑎𝑎𝑎‖2 = (
𝑘

∑
𝑗=1

𝑎2
𝑗)

1/2
=

√
𝑎𝑎𝑎′𝑎𝑎𝑎.

The ℓ1-norm is the sum of absolute values, and the ℓ2-norm, also known as the Euclidean
norm, represents the length of the vector in the Euclidean space.

Ridge regression is also called L2 regularization because it penalizes the sum of squared
errors by the squared ℓ2-norm of the coefficient vector, ‖𝛽𝛽𝛽‖2

2 = 𝛽𝛽𝛽′𝛽𝛽𝛽. Ridge is the solution to
the minimization problem Equation 11.2, which can be written as

̂𝛽𝛽𝛽𝑟𝑖𝑑𝑔𝑒 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖2
2.

11.10 L1 Regularization: Lasso

An alternative approach is L1 regularization, also known as lasso. The lasso estimator is
defined as

̂𝛽𝛽𝛽𝑙𝑎𝑠𝑠𝑜 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆‖𝛽𝛽𝛽‖1,

where ‖𝛽𝛽𝛽‖1 = ∑𝑘
𝑗=1 |𝛽𝑗|.

The elastic net estimator is a hybrid method. It combines L1 and L2 regularization using a
weight 0 ≤ 𝛼 ≤ 1:

̂𝛽𝛽𝛽𝑛𝑒𝑡,𝛼 = argmin𝛽𝛽𝛽(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽)′(𝑌𝑌𝑌 − 𝑋𝑋𝑋𝛽𝛽𝛽) + 𝜆(𝛼‖𝛽𝛽𝛽‖1 + (1 − 𝛼)‖𝛽𝛽𝛽‖2
2).

This includes ridge (𝛼 = 0) and lasso (𝛼 = 1) as special cases.

Ridge has a closed form solution given by Equation 11.1. Lasso and elastic net with 𝛼 >
0 require numerical solutions by means of quadratic programming. The solution typically
involves some zero coefficients.
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11.11 Implementation in R

Let’s consider the mtcars dataset, which is available in base R. Have a look at ?mtcars to see
the data description. We estimate a ridge regression model to predict the variable mpg (miles
per gallon) using the other variables. We consider the values 𝜆 = 0.5 and 𝜆 = 2.5.

Ridge, lasso, and elastic net are implemented in the glmnet package. The glmnet() function
requires matrix-valued data as input. The model.matrix() command is useful because it
produces the regressor matrix 𝑋𝑋𝑋 and converts categorical variables into dummy variables.

library(glmnet)
Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1]
dim(X)

[1] 32 10

fit.ridge1 = glmnet(x=X, y=Y, alpha=0, lambda = 0.5)
fit.ridge1$beta

10 x 1 sparse Matrix of class "dgCMatrix"
s0

cyl -0.250698757
disp -0.001893223
hp -0.013079878
drat 0.978514241
wt -1.902328296
qsec 0.316107066
vs 0.472551434
am 2.113922488
gear 0.631836101
carb -0.661215998

fit.ridge2 = glmnet(x=X, y=Y, alpha=0, lambda = 2.5)
fit.ridge2$beta

10 x 1 sparse Matrix of class "dgCMatrix"
s0

cyl -0.368541841
disp -0.005184086
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hp -0.011710951
drat 1.052837310
wt -1.264016952
qsec 0.164790158
vs 0.755205256
am 1.655241565
gear 0.546732963
carb -0.560023425

You can use the command coef(fit.ridge1) to also display the intercept. By default, the
regressors are standardized. You can turn off this setting by using the argument standardize
= FALSE. The ℓ2 norm of the coefficients is small for larger values of 𝜆:

c(sqrt(sum(fit.ridge1$beta)),
sqrt(sum(fit.ridge2$beta)))

[1] 1.297581 1.401902

The lasso estimator (𝛼 = 1) sets many coefficient equal to zero:

fit.lasso = glmnet(x=X, y=Y, alpha=1, lambda = 0.5)
coef(fit.lasso)

11 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 35.88689755
cyl -0.85565434
disp .
hp -0.01411517
drat 0.07603453
wt -2.67338139
qsec .
vs .
am 0.48651385
gear .
carb -0.10722338

The cv.glmnet() command estimates the optimal shrinkage parameter using 10-fold cross
validation:
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set.seed(123) ## for reproducibility
cv.glmnet(x=X, y=Y, alpha = 0)$lambda.min

[1] 2.746789

cv.glmnet(x=X, y=Y, alpha = 1)$lambda.min

[1] 0.8007036

We can use ridge and lasso to estimate linear models with more variables than observations.
The command ^2 includes all pairwise interaction terms, which produces 55 variables in total.
The dataset has 𝑛 = 32 observations.

X.large = model.matrix(mpg ~. ^2, data = mtcars)[,-1]
dim(X.large)

[1] 32 55

fit.ridgelarge = glmnet(x=X.large, y=Y, alpha=0, lambda = 0.5)
coef(fit.ridgelarge)

56 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 1.315259e+01
cyl -4.061218e-02
disp -8.137358e-04
hp -5.588290e-03
drat 4.386174e-01
wt -5.547986e-01
qsec 2.308772e-01
vs 6.705889e-01
am 4.379822e-01
gear 8.788479e-01
carb -1.537294e-01
cyl:disp 6.830897e-05
cyl:hp 1.351742e-04
cyl:drat 2.455464e-02
cyl:wt -2.621868e-03
cyl:qsec 3.358094e-03
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cyl:vs 1.591177e-01
cyl:am 6.102385e-02
cyl:gear 3.481957e-02
cyl:carb 7.499023e-04
disp:hp 8.592521e-06
disp:drat -9.421536e-05
disp:wt 2.191122e-04
disp:qsec -1.789464e-05
disp:vs -1.280463e-03
disp:am -9.043597e-03
disp:gear -3.601317e-04
disp:carb -1.255358e-04
hp:drat -2.086003e-03
hp:wt 4.404097e-04
hp:qsec -4.347470e-04
hp:vs -1.858343e-02
hp:am -2.604620e-03
hp:gear -3.464491e-04
hp:carb 9.107116e-04
drat:wt -1.766081e-01
drat:qsec 3.828881e-02
drat:vs 1.123963e-01
drat:am 5.047132e-02
drat:gear 8.294201e-02
drat:carb -4.770358e-02
wt:qsec -3.289204e-02
wt:vs -3.239643e-01
wt:am -4.197733e-01
wt:gear -1.890703e-01
wt:carb -1.497574e-02
qsec:vs 3.114409e-02
qsec:am 5.199239e-02
qsec:gear 7.035311e-02
qsec:carb -1.859676e-02
vs:am 8.688134e-01
vs:gear 3.311330e-01
vs:carb -2.768199e-01
am:gear 1.462749e-01
am:carb 1.588431e-01
gear:carb 8.165764e-03
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fit.lassolarge = glmnet(x=X.large, y=Y, alpha=1, lambda = 0.5)
coef(fit.lassolarge)

56 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) 23.655330629
cyl -0.036308043
disp .
hp .
drat .
wt -1.301739306
qsec .
vs .
am .
gear .
carb .
cyl:disp .
cyl:hp .
cyl:drat .
cyl:wt .
cyl:qsec .
cyl:vs .
cyl:am .
cyl:gear .
cyl:carb .
disp:hp .
disp:drat .
disp:wt .
disp:qsec .
disp:vs .
disp:am .
disp:gear .
disp:carb .
hp:drat .
hp:wt .
hp:qsec -0.001328046
hp:vs .
hp:am .
hp:gear .
hp:carb .
drat:wt -0.337667877
drat:qsec 0.073725291
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drat:vs .
drat:am .
drat:gear .
drat:carb .
wt:qsec .
wt:vs .
wt:am .
wt:gear .
wt:carb .
qsec:vs .
qsec:am .
qsec:gear 0.041623415
qsec:carb .
vs:am 2.429571498
vs:gear .
vs:carb .
am:gear .
am:carb .
gear:carb .

11.12 R-codes

methods-sec11.R
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12 Principal Component Regression

If two regressors are highly correlated, we can typically drop one of the regressors because they
mostly contain the same information.

The idea of principal component regression is to exploit the correlations among the regressors
to reduce their number while retaining as much of the original information as possible.

12.1 Principal Components

The principal components (PC) are linear combinations of the regressor variables that capture
as much of the variation in the original variables as possible.

Principal Components

Let 𝑋𝑋𝑋𝑖 be a 𝑘-variate vector of regressor variables.

The first principal component is 𝑃𝑖1 = 𝑤𝑤𝑤′
1𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤1 satisfies

𝑤𝑤𝑤1 = argmax𝑤𝑤𝑤′𝑤𝑤𝑤=1 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The second principal component is 𝑃𝑖2 = 𝑤𝑤𝑤′
2𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤2 satisfies

𝑤𝑤𝑤2 = argmax 𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

The 𝑙-th principal component is 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖, where 𝑤𝑤𝑤𝑙 satisfies

𝑤𝑤𝑤𝑙 = argmax 𝑤𝑤𝑤′𝑤𝑤𝑤=1
𝑤𝑤𝑤′𝑤𝑤𝑤1=…=𝑤𝑤𝑤′𝑤𝑤𝑤𝑙−1=0

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖]

A 𝑘-variate regressor vector 𝑋𝑋𝑋𝑖 has 𝑘 principal components 𝑃𝑖1, … , 𝑃𝑖𝑘 and 𝑘 corresponding
principal component weights or loadings 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘.

By definition, the principal components are descendingly ordered by their variance:

𝑉 𝑎𝑟[𝑃𝑖1] ≥ 𝑉 𝑎𝑟[𝑃𝑖2] ≥ … ≥ 𝑉 𝑎𝑟[𝑃𝑖𝑘] ≥ 0

The principal component weights are orthonormal:

𝑤𝑤𝑤′
𝑖𝑤𝑤𝑤𝑗 = {1 if 𝑖 = 𝑗,

0 if 𝑖 ≠ 𝑗.
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Moreover, 𝑤𝑤𝑤1,𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑘 form an orthonormal basis for the 𝑘-dimensional vector space ℝ𝑘. The
regressor vector admits the following decomposition into its principal components:

𝑋𝑋𝑋𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝑤𝑤𝑤𝑙 (12.1)

The decomposition of a dataset into its principal components is called principal component
analysis (PCA).

12.2 Analytical PCA Solution

In this subsection, we will use some matrix calculus and eigenvalue theory. To recap the
relevant matrix algebra, the following resources will be useful:

• Eigenvalues and Eigenvectors: https://matrix.svenotto.com/04_furtherconcepts.html
• Derivative rules for vectors: https://matrix.svenotto.com/05_calculus.html

The maximization problem for the first principal component is

max
𝑤𝑤𝑤

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] subject to 𝑤𝑤𝑤′𝑤𝑤𝑤 = 1. (12.2)

The variance of interest can be rewriten as

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))2]
= 𝐸[(𝑤𝑤𝑤′(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖]))((𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤)]
= 𝑤𝑤𝑤′𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′]𝑤𝑤𝑤
= 𝑤𝑤𝑤′Σ𝑤𝑤𝑤

where Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is the population covariance matrix of 𝑋𝑋𝑋𝑖. Thus, the constrained maxi-
mization problem Equation 12.2 has the Lagrangian

ℒ(𝑤𝑤𝑤, 𝜆) = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 − 𝜆(𝑤𝑤𝑤′𝑤𝑤𝑤 − 1),

where 𝜆 is a Lagrange multiplier.

Recall the derivative rules for vectors: If 𝐴𝐴𝐴 is a symmetric matrix, then the derivative of 𝑎𝑎𝑎′𝐴𝐴𝐴𝑎𝑎𝑎
with respect to 𝑎𝑎𝑎 is 2𝐴𝐴𝐴𝑎𝑎𝑎. Therefore, the first order condition with respect to 𝑤𝑤𝑤 is

Σ𝑤𝑤𝑤 = 𝜆𝑤𝑤𝑤. (12.3)

The pair (𝜆,𝑤𝑤𝑤) must satisfy the eigenequation Equation 12.3. The lagrange multiplier 𝜆 must
be an eigenvalue of Σ and the weight vector 𝑤𝑤𝑤 must be a corresponding eigenvector. By the
first order condition with respect to 𝜆,

𝑤𝑤𝑤′𝑤𝑤𝑤 = 1,
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the eigenvector should be normalized.

Therefore, the variance if interest is

𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝑤𝑤𝑤′Σ𝑤𝑤𝑤 = 𝑤𝑤𝑤′(𝜆𝑤𝑤𝑤) = 𝜆. (12.4)

Consequently, 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] must be an eigenvalue of Σ and 𝑤𝑤𝑤 is a corresponding normalized
eigenvector.

The expression 𝑉 𝑎𝑟[𝑤𝑤𝑤′𝑋𝑋𝑋𝑖] = 𝜆 is maximized if we use the largest eigenvalue 𝜆 = 𝜆1. Conse-
quently, the variance of the first principal component 𝑃𝑖1 is equal to the largest eigenvalue 𝜆1
of Σ, and the first principal component weight 𝑤𝑤𝑤1 is a normalized eigenvector corresponding
to the eigenvalue 𝜆1.

Analogously, the second principal component weight 𝑤𝑤𝑤2 must also be a normalized eigenvector
of Σ with the additional restriction that it is orthogonal to 𝑤𝑤𝑤1. Therefore, it cannot be an
eigenvector corresponding to the first eigenvalue, and we use the second largest eigenvalue
𝜆 = 𝜆2 to maximize Equation 12.4.

The variance of the second principal component 𝑃𝑖2 is equal to the second largest eigenvalue
𝜆2 of Σ, and the second principal component weight 𝑤𝑤𝑤2 is a corresponding normalized eigen-
vector.

To continue this pattern, the variance of the 𝑙-th principal component 𝑃𝑖𝑙 is equal to the 𝑙-th
largest eigenvalue 𝜆𝑙 of Σ, and the 𝑙-th principal component weight 𝑤𝑤𝑤𝑙 is a corresponding
normalized eigenvector.

Principal Components Solution

Let Σ be the covariance matrix of the 𝑘-variate vector of regressor variables 𝑋𝑋𝑋𝑖, let 𝜆1 ≥ 𝜆2 ≥
… 𝜆𝑘 ≥ 0 be the descendingly ordered eigenvalues of Σ, and let 𝑣𝑣𝑣1, … ,𝑣𝑣𝑣𝑘 be corresponding
orthonormal eigenvectors.

• The principal component weights are 𝑤𝑤𝑤𝑙 = 𝑣𝑣𝑣𝑙 for 𝑙 = 1, … , 𝑘
• The principal components are 𝑃𝑖𝑙 = 𝑣𝑣𝑣′

𝑙𝑋𝑋𝑋𝑖, and they have the properties

𝑉 𝑎𝑟[𝑃𝑖𝑙] = 𝜆𝑙, 𝐶𝑜𝑣(𝑃𝑖𝑙, 𝑃𝑖𝑚) = 0, 𝑙 ≠ 𝑚.

Principal components are uncorrelated because

𝐶𝑜𝑣(𝑃𝑖𝑚, 𝑃𝑖𝑙) = 𝐸[𝑤𝑤𝑤′
𝑚(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′𝑤𝑤𝑤𝑙]

= 𝑤𝑤𝑤′
𝑚Σ𝑤𝑤𝑤𝑙 = 𝜆𝑚𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙,

where 𝑤𝑤𝑤′
𝑚𝑤𝑤𝑤𝑙 = 1 if 𝑚 = 𝑙 and 𝑤𝑤𝑤′

𝑚𝑤𝑤𝑤𝑙 = 0 if 𝑚 ≠ 𝑙
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12.3 Sample principal components

The covariance matrix Σ = 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖] is unknown in practice. Instead, we estimate it from the
sample 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛:

Σ̂ΣΣ = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Let �̂�1 ≥ �̂�2 ≥ … , �̂�𝑘 ≥ 0 be the eigenvalues of Σ̂ΣΣ and let ̂𝑣𝑣𝑣1, … , ̂𝑣𝑣𝑣𝑘 be corresponding orthonor-
mal eigenvectors. Then,

• The 𝑙-th sample principal component for observation 𝑖 is

𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖

• The 𝑙-th sample principal component weight vector is

𝑤𝑤𝑤𝑙 = ̂𝑣𝑣𝑣𝑙

• The (adjusted) sample variance of the 𝑙-th sample principal components series 𝑃1𝑙, … , 𝑃𝑛𝑙
is �̂�𝑙, and the sample covariances of different principal components series are zero.

12.4 PCA in R

Let’s compute the sample principal components of the mtcars dataset:

pca = prcomp(mtcars)
## the principal components are arranged by columns
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -79.596425 2.132241 -2.153336 -2.7073437 -0.7023522
Mazda RX4 Wag -79.598570 2.147487 -2.215124 -2.1782888 -0.8843859
Datsun 710 -133.894096 -5.057570 -2.137950 0.3460330 1.1061111
Hornet 4 Drive 8.516559 44.985630 1.233763 0.8273631 0.4240145
Hornet Sportabout 128.686342 30.817402 3.343421 -0.5211000 0.7365801
Valiant -23.220146 35.106518 -3.259562 1.4005360 0.8029768

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.31486106 -0.098695018 0.07789812 -0.2000092 -0.29008191
Mazda RX4 Wag -0.45343873 -0.003554594 0.09566630 -0.3533243 -0.19283553
Datsun 710 1.17298584 0.005755581 -0.13624782 -0.1976423 0.07634353
Hornet 4 Drive -0.05789705 -0.024307168 -0.22120800 0.3559844 -0.09057039
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Hornet Sportabout -0.33290957 0.106304777 0.05301719 0.1532714 -0.18862217
Valiant -0.08837864 0.238946304 -0.42390551 0.1012944 -0.03769010

PC11
Mazda RX4 -0.1057706
Mazda RX4 Wag -0.1069047
Datsun 710 -0.2668713
Hornet 4 Drive -0.2088354
Hornet Sportabout 0.1092563
Valiant -0.2757693

## the principal components weights
pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5
mpg -0.038118199 0.009184847 0.98207085 0.047634784 -0.08832843
cyl 0.012035150 -0.003372487 -0.06348394 -0.227991962 0.23872590
disp 0.899568146 0.435372320 0.03144266 -0.005086826 -0.01073597
hp 0.434784387 -0.899307303 0.02509305 0.035715638 0.01655194
drat -0.002660077 -0.003900205 0.03972493 -0.057129357 -0.13332765
wt 0.006239405 0.004861023 -0.08491026 0.127962867 -0.24354296

PC6 PC7 PC8 PC9 PC10
mpg -0.143790084 -0.039239174 -2.271040e-02 -0.002790139 0.030630361
cyl -0.793818050 0.425011021 1.890403e-01 0.042677206 0.131718534
disp 0.007424138 0.000582398 5.841464e-04 0.003532713 -0.005399132
hp 0.001653685 -0.002212538 -4.748087e-06 -0.003734085 0.001862554
drat 0.227229260 0.034847411 9.385817e-01 -0.014131110 0.184102094
wt -0.127142296 -0.186558915 -1.561907e-01 -0.390600261 0.829886844

PC11
mpg 0.0158569365
cyl -0.1454453628
disp -0.0009420262
hp 0.0021526102
drat 0.0973818815
wt 0.0198581635

## the standard deviation of the principal components
## are the squareroots of the sample eigenvalues
pca$sdev

[1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
[7] 0.3085791 0.2859604 0.2506973 0.2106519 0.1984238
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Principal components are sensitive to the scaling of the data. Consequently, it is recommended
to first scale each variable in the dataset to have mean zero and unit variance: scale(mtcars).
In this case, Σ is the correlation matrix.

pca = mtcars |> scale() |> prcomp()
pca$x |> head()

PC1 PC2 PC3 PC4 PC5
Mazda RX4 -0.64686274 1.7081142 -0.5917309 0.11370221 0.9455234
Mazda RX4 Wag -0.61948315 1.5256219 -0.3763013 0.19912121 1.0166807
Datsun 710 -2.73562427 -0.1441501 -0.2374391 -0.24521545 -0.3987623
Hornet 4 Drive -0.30686063 -2.3258038 -0.1336213 -0.50380035 -0.5492089
Hornet Sportabout 1.94339268 -0.7425211 -1.1165366 0.07446196 -0.2075157
Valiant -0.05525342 -2.7421229 0.1612456 -0.97516743 -0.2116654

PC6 PC7 PC8 PC9 PC10
Mazda RX4 -0.01698737 -0.42648652 0.009631217 -0.14642303 0.06670350
Mazda RX4 Wag -0.24172464 -0.41620046 0.084520213 -0.07452829 0.12692766
Datsun 710 -0.34876781 -0.60884146 -0.585255765 0.13122859 -0.04573787
Hornet 4 Drive 0.01929700 -0.04036075 0.049583029 -0.22021812 0.06039981
Hornet Sportabout 0.14919276 0.38350816 0.160297757 0.02117623 0.05983003
Valiant -0.24383585 -0.29464160 -0.256612420 0.03222907 0.20165466

PC11
Mazda RX4 0.17969357
Mazda RX4 Wag 0.08864426
Datsun 710 -0.09463291
Hornet 4 Drive 0.14761127
Hornet Sportabout 0.14640690
Valiant 0.01954506

pca$rotation |> head()

PC1 PC2 PC3 PC4 PC5 PC6
mpg -0.3625305 0.01612440 -0.22574419 -0.022540255 -0.10284468 -0.10879743
cyl 0.3739160 0.04374371 -0.17531118 -0.002591838 -0.05848381 0.16855369
disp 0.3681852 -0.04932413 -0.06148414 0.256607885 -0.39399530 -0.33616451
hp 0.3300569 0.24878402 0.14001476 -0.067676157 -0.54004744 0.07143563
drat -0.2941514 0.27469408 0.16118879 0.854828743 -0.07732727 0.24449705
wt 0.3461033 -0.14303825 0.34181851 0.245899314 0.07502912 -0.46493964

PC7 PC8 PC9 PC10 PC11
mpg 0.367723810 0.754091423 -0.23570162 -0.13928524 -0.12489563
cyl 0.057277736 0.230824925 -0.05403527 0.84641949 -0.14069544
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disp 0.214303077 -0.001142134 -0.19842785 -0.04937979 0.66060648
hp -0.001495989 0.222358441 0.57583007 -0.24782351 -0.25649206
drat 0.021119857 -0.032193501 0.04690123 0.10149369 -0.03953025
wt -0.020668302 0.008571929 -0.35949825 -0.09439426 -0.56744870

pca$sdev

[1] 2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798
[8] 0.3505730 0.2775728 0.2281128 0.1484736

12.5 Variance of principal components

Since the sample principal components are uncorrelated, the total variation in the data is

𝑉 𝑎𝑟[
𝑘

∑
𝑚=1

𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

𝑉 𝑎𝑟[𝑃𝑖𝑚] =
𝑘

∑
𝑚=1

�̂�𝑙.

The proportion of variance explained by the 𝑙-th principal component is

𝑉 𝑎𝑟[𝑃𝑖𝑙]
𝑉 𝑎𝑟[∑𝑘

𝑚=1 𝑃𝑖𝑚]
= �̂�𝑙

∑𝑘
𝑚=1 �̂�𝑚

A scree plot is useful to see how much each principal component contributes to the total
variation:

pcvar = pca$sdev^2
varexpl = pcvar/sum(pcvar)
varexpl

[1] 0.600763659 0.240951627 0.057017934 0.024508858 0.020313737 0.019236011
[7] 0.012296544 0.011172858 0.007004241 0.004730495 0.002004037

plot(varexpl)

cumsum(varexpl)

[1] 0.6007637 0.8417153 0.8987332 0.9232421 0.9435558 0.9627918 0.9750884
[8] 0.9862612 0.9932655 0.9979960 1.0000000

The first principal component explains more that 60% of the variation, the first four explain
more than 90% of the variation, the first 6 more than 95%, and the first 9 principal component
more than 99% of the variation.

157



2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

Index

va
re

xp
l

12.6 Linear regression with principal components

Principal components can be used to estimate the high-dimensional (large 𝑘) linear regression
model

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛.

Since the principal component weights 𝑤𝑤𝑤1, … ,𝑤𝑤𝑤𝑘 form a basis of ℝ𝑘, the regressors have the
basis representation given by Equation 12.1. Similarly, we can represent the coefficient vector
in terms of the principal component basis:

𝛽𝛽𝛽 =
𝑘

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, 𝜃𝑙 = 𝑤𝑤𝑤′
𝑙𝛽𝛽𝛽. (12.5)

Inserting in the regression function gives

𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 =

𝑘
∑
𝑙=1

𝑋𝑋𝑋′
𝑖𝑤𝑤𝑤𝑙⏟

=𝑃𝑖𝑙

𝜃𝑙,

and the regression equation becomes

𝑌𝑖 =
𝑘

∑
𝑙=1

𝑃𝑖𝑙𝜃𝑙 + 𝑢𝑖. (12.6)

This regression equation is convenient because the regressors 𝑃𝑖𝑙 are uncorrelated, and OLS
estimates for 𝜃𝑙 can be inserted back into Equation 12.5 to get an estimate for 𝛽𝛽𝛽.

When 𝑘 is large, this approach is still prone to overfitting. The 𝑘 principal components of 𝑋𝑋𝑋𝑖
explain 100% of its variance, but it may be reasonable to select a smaller number of principal
components 𝑝 < 𝑘 that explain 95% or 99% of the variance.
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The remaining 𝑘 − 𝑝 principal components explain only 5% or 1% of the variance. The idea
is that we truncate the model by assuming that the remaining principal components contain
only noise that is uncorrelated with 𝑌𝑖.

Assumption (PC): 𝐸[𝑃𝑖𝑚𝑌𝑖] = 0 for all 𝑚 = 𝑝 + 1, … , 𝑘.

Because the principal components are uncorrelated, we have 𝜃𝑙 = 𝐸[𝑌𝑖𝑃𝑖𝑙]/𝐸[𝑃 2
𝑖𝑙], and, there-

fore 𝜃𝑚 = 0 for 𝑚 = 𝑝 + 1, … , 𝑘. Consequently,

𝛽𝛽𝛽 =
𝑝

∑
𝑙=1

𝜃𝑙𝑤𝑤𝑤𝑙, (12.7)

and Equation 12.6 becomes a factor model with 𝑝 factors:

𝑌𝑖 =
𝑝

∑
𝑙=1

𝜃𝑙𝑃𝑖𝑙 + 𝑢𝑖 = 𝑃𝑃𝑃 ′
𝑖𝜃𝜃𝜃 + 𝑢𝑖,

where 𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′ and 𝜃𝜃𝜃 = (𝜃1, … , 𝜃𝑝)′. The least squares estimator of 𝜃𝜃𝜃 using the
regressors 𝑃𝑃𝑃 𝑖, 𝑖 = 1, … 𝑛 can then be inserted to Equation 12.7 to obtain an estimate for 𝛽𝛽𝛽.

In practice, the principal components are unknown and must be replaced by the first 𝑝 sample
principal components

𝑃𝑃𝑃 𝑖 = (𝑃𝑖1, … , 𝑃𝑖𝑝)′, 𝑃𝑖𝑙 = 𝑤𝑤𝑤′
𝑙𝑋𝑋𝑋𝑖.

The feasible least squares estimator for 𝜃 is

̂𝜃𝜃𝜃 = ( ̂𝜃1, … , ̂𝜃𝑝)′ = (
𝑛

∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑃𝑃𝑃
′
𝑖)

−1 𝑛
∑
𝑖=1

𝑃𝑃𝑃 𝑖𝑌𝑖,

and the principal components estimator for 𝛽𝛽𝛽 is

̂𝛽𝛽𝛽𝑝𝑐 =
𝑝

∑
𝑙=1

̂𝜃𝑙𝑤𝑤𝑤𝑙.

12.7 Selecting the number of factors

To select the number of principal components, one practical approach is to choose those that
explain a pre-specified percentage (90-99%) of the total variance.

Y = mtcars$mpg
X = model.matrix(mpg ~., data = mtcars)[,-1] |> scale()
## principal component analysis
pca = prcomp(X)
P = pca$x #full matrix of all principal components
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## variance explained
eigenval = pca$sdev^2
varexpl = eigenval/sum(eigenval)
cumsum(varexpl)

[1] 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
[8] 0.9922551 0.9976204 1.0000000

The first four principal components explain more than 92% of the variance, and the first seven
more than 98%.

Another method involves creating a scree plot to display the eigenvalues (variances) for each
principal component and identifying the point where the eigenvalues sharply drop (elbow
point).

plot(eigenval)
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We find an elbow at four principal components.

Selecting the number of principal components, similar to shrinkage estimation, involves bal-
ancing variance and bias. If the Assumption (PC) holds, the PC estimator is unbiased; if it
doesn’t, a small bias is introduced. Increasing the number of components 𝑝 reduces bias but
increases variance, while decreasing 𝑝 reduces variance but increases bias.

Similarly to the shrinkage parameter in ridge and lasso estimation, the number of factors 𝑝
can be treated as a tuning parameter. We can use 𝑚-fold cross validation to select 𝑝 such that
the MSE is minimized.
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12.8 R-codes

methods-sec12.R
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13 Case Study III: Big Data

library(readxl) # for reading Excel files
library(tidyverse) # for data manipulation and visualization
library(caret) # for cross-validation
library(glmnet) # for ridge and lasso regression

13.1 Introduction

In this case study, we will explore the empirical application of prediction methods using the test
score data set from California elementary schools. The data set includes detailed information
on various school and community characteristics, which allows us to experiment with different
regression models and prediction techniques.

We aim to predict fifth-grade test scores using three different sets of predictors: a small set with
only a few variables, a large set with many variables, and a very large set with an extensive
number of predictors, including interactions, squares, and cubes of the main variables.

13.2 Data Set Description

The primary data set contains data on 3932 elementary schools in California from 2013. The
raw data and its variable descriptions can be downloaded here (CA_Schools_EE14).

Data has been splitted into three sets based on the number of predictors:

1. Small Data Set: Contains 4 variables that have been commonly used in previous
studies:

• Student-teacher ratio (str_s)

• Median income of the local population (med_income_z)

• Teachers average years of experience (te_avgyr_s)

• Instructional expenditures per student (exp_1000_1999_d)
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2. Large Data Set: Contains 817 predictors including 38 main variables, their squares,
cubes, and all possible pairwise interactions. The main variables cover student demo-
graphics, teacher characteristics, school funding, and expenditure metrics, including frac-
tions of students by eligibility and ethnicity, teacher experience, school expenditures, and
district-level financial data.

3. Very Large Data Set: Contains 2065 predictors, which includes additional demo-
graphic variables, their squares, cubes, and interactions with the binary variables de-
scribing school characteristics.

For simplicity, these data sets have been prepared for you and can be accessed directly from
the xlsx files (see Ilias course):

data_large = read_xlsx("data_large.xlsx")

We will use the large data set here, but you can apply the same code to the small and the very
large data set.

data_small = read_xlsx("data_small.xlsx")
data_verylarge = read_xlsx("data_verylarge.xlsx")

Here you find a script to create your own data sets based on the raw data.

13.3 Methods

We will use four different methods to estimate the predictive models:

1. Ordinary Least Squares (OLS)

2. Ridge Regression

3. Lasso Regression

4. Principal Components Regression (PCR)

These methods will be applied to each of the data sets to evaluate their performance in
predicting out-of-sample test scores. The main metric used to assess the prediction accuracy
is the Root Mean Squared Error (RMSE).

163

https://methods.svenotto.com/data_setup_CASchools.R


13.4 Data Preparation

The data is processed and divided into training and test sets (50/50 split), with 1966 observa-
tions each. The predictor variables are standardized, and the response variable is the average
fifth-grade test score at the school.

## Select the data set to be used (large dataset in this case)
mydata = data_large

## Split 50/50 into training and test sets
set.seed(123) #for reproducibility
train_indices = sample(1:nrow(mydata), size = 0.5*nrow(mydata))
train_data = mydata[train_indices, ]
test_data = mydata[-train_indices, ]

## Standardize/scale the predictor variables
train_response = train_data$testscore
train_predictors = train_data |> select(-testscore) |> scale()
test_response = test_data$testscore
test_predictors = test_data |> select(-testscore) |> scale()

13.5 Cross-Validation for Tuning Parameters

13.5.1 Ridge Regression

For ridge regression, we perform 10-fold cross-validation to select the optimal shrinkage pa-
rameter (𝜆). The tuning parameter that minimizes the cross-validated RMSE is chosen for
the final model.

The train() function from the caret package can be used for cross validation. We set alpha
to 0 for ridge regression and we try out different lambdas specified in the sequence given by
lambdagrid.

# grid for lambdas over which to cross validate. the finer the grid, the longer it takes
lambdagrid = exp(seq(0,7,length=100))

cv.ridge = train(
x=train_predictors,
y=train_response,
method = "glmnet",
metric = "RMSE",
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tuneGrid = expand.grid(alpha = 0,lambda = lambdagrid),
trControl = trainControl(method = "cv", number = 10) # 10-fold cv

)
plot(cv.ridge) # plot the cv results for ridge

Cross-Validation Results for Ridge Regression

# print best tuning parameters for ridge
cv.ridge$bestTune

[1] 42.41384

We can also fine-tune lambda in a specific region to get a better picture, e.g. around 30-50:

cv.ridge.finetune = train(
x=train_predictors,
y=train_response,
method = "glmnet",
metric = "RMSE",
tuneGrid = expand.grid(alpha = 0,lambda = seq(30,50, length = 101)),
trControl = trainControl(method = "cv", number = 10)

)
plot(cv.ridge.finetune)
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# the result may be slightly different each time because the folds are sampled randomly
cv.ridge.finetune$bestTune

[1] 34.8

The built-in cross-validation method of the glmnet package gives a similar tuning parameter:

cv.ridge2 = cv.glmnet(x=train_predictors, y=train_response, alpha=0)
cv.ridge2$lambda.min

[1] 39.27491

13.5.2 Lasso Regression

Similar to ridge regression, we use 10-fold cross-validation to find the optimal shrinkage pa-
rameter for the lasso model.

The procedure is the same, but now we set alpha = 1 for lasso.
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lambdagrid = seq(0, 2, length = 101)

cv.lasso = train(
x = train_predictors,
y = train_response,
method = "glmnet",
metric = "RMSE",
tuneGrid = expand.grid(alpha = 1, lambda = lambdagrid),
trControl = trainControl(method = "cv", number = 10) # 10-fold cv

)
plot(cv.lasso)

Cross-Validation Results for Lasso Regression

# print best tuning parameters for lasso
cv.lasso$bestTune

[1] 0.56

Again, we can alternatively use the glmnet package with its built-in cross-validation method:

cv.lasso2 = cv.glmnet(x=train_predictors, y=train_response, alpha=1)
cv.lasso2$lambda.min

[1] 0.4841995
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13.5.3 Principal Components Regression

For principal component regression (PCR), we use principal components analysis to determine
the number of components that explain a significant amount of variance in the predictors. We
then use 10-fold cross-validation to select the number of principal components that balances
bias and variance for the regression model.

## Principal Component Analysis
pca_result = prcomp(train_predictors)
X_pca = pca_result$x # Full matrix of all principal component scores

We then use a subset of the principal components as predictors in a regression model. Here,
we start by using the first four principal components.

## Run a PC-regression with ncomp=4 principal components
ncomp = 4
data_pca = data.frame(y = train_response, X_pca[, 1:ncomp])
lm(y~., data = data_pca)

Call:
lm(formula = y ~ ., data = data_pca)

Coefficients:
(Intercept) PC1 PC2 PC3 PC4

752.792 -2.480 -2.183 2.294 1.436

By regressing on the first few principal components, we reduce the dimensionality of the
problem. This can help prevent overfitting, as the components capture the most important
information from the original predictors while ignoring the noise.

To decide how many principal components to use, we can plot the scree plot, which shows the
fraction of total variance explained by each principal component.

## Scree Plot: Fraction of variance explained
var_explained = pca_result$sdev^2 / sum(pca_result$sdev^2)
plot(var_explained[1:70], type="b",

xlab = "Principal Component", ylab = "Fraction of Variance Explained")

Scree Plot: Fraction of variance explained

The scree plot indicates an elbow around 30-40 components. We can also determine the number
of principal components needed to explain a specific percentage of the total variance.
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## number of components needed to explain 90% of variance
which(cumsum(var_explained) > 0.90)[1]

[1] 34

## number of components needed to explain 95% of variance
which(cumsum(var_explained) > 0.95)[1]

[1] 62

## number of components needed to explain 99% of variance
which(cumsum(var_explained) > 0.99)[1]

[1] 157

Retaining components that explain 90%-95% of the variance is a common practice to ensure
that most of the underlying structure of the data is preserved while omitting unnecessary
noise.
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Finally, we use cross-validation to find the optimal number of principal components that
minimizes the mean squared prediction error.

## PCR 10-fold cross-validation
myfunc.cvpca = function(p){
data_pca = data.frame(y = train_response, X_pca[,1:p])
cv = train(

y ~ ., data = data_pca,
method = "lm",
metric = "RMSE",
trControl = trainControl(method = "cv", number = 10)

)
return(cv$results$RMSE)

}
# Iterate function crossval over ncomp = 1, ..., maxcomp
maxcomp = 150 # select not more than number of variables (for data_small select <=4)
cv.pca = sapply(1:maxcomp, myfunc.cvpca) # sapply is useful for iterating over function arguments ncomp

# Find the number of components with the lowest RMSPE
which.min(cv.pca)
plot(cv.pca, type="l")

[1] 48

Cross-Validation Results for Principal Components Regression
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13.6 Summary

We can now summarize the tuning parameters that were determined through cross-validation
for each predictive method and each data set.

Estimated 𝜆 or 𝑝:

Data Set Ridge Lasso PCR
Small (k = 4) 3.33 0.4 4
Large (k = 817) 42.41 0.56 48
Very Large (k = 2065) 437.38 0.58 73

The parameters are selected by minimizing the MSPE through 10-fold cross-validation using
the 1966 observations in the training sample.

We reserved a separate test sample of 1966 observations, independent of the training sample.
To evaluate the predictive performance, we use the estimated models from the training sample
to predict 𝑌𝑖 from 𝑋𝑖𝑋𝑖𝑋𝑖 for all 𝑖 in the test sample and then assess the mean prediction errors.
As a baseline competitor, we include the OLS predictor.

## OLS
fit.ols = lm(testscore ~., data = train_data)
oospred.ols = predict(fit.ols, newdata = test_data)

## Ridge
lambda.ridge = 42.41
fit.ridge = glmnet(x=train_predictors, y=train_response, alpha=0, lambda = lambda.ridge)
oospred.ridge = predict(fit.ridge, test_predictors)

## LASSO
lambda.lasso = 0.56
fit.lasso = glmnet(x=train_predictors, y=train_response, alpha=1, lambda = lambda.lasso)
oospred.lasso = predict(fit.lasso, test_predictors)

## PCA
p.pcr = 48
pca_result = prcomp(train_predictors)
data_pca = data.frame(y=train_response, pca_result$x[,1:p.pcr])
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fit.pcr = lm(y~., data = data_pca)
## Estimated principal component weights
w = pca_result$rotation
## Principal components for the training data (coincides with pca_result$x):
P.train = train_predictors %*% w
## Principal components for the test data:
P.test = test_predictors %*% w
datapca.test = data.frame(y=test_response, P.test[,1:p.pcr])
## out of sample prediction
oospred.pca = predict(fit.pcr, newdata = datapca.test)

# Out-of-sample RMSPE computation
# OLS
sqrt(mean((test_response - oospred.ols)^2))

[1] 61.8867

# Ridge
sqrt(mean((test_response - oospred.ridge)^2))

[1] 39.10138

# Lasso
sqrt(mean((test_response - oospred.lasso)^2))

[1] 39.33968

# PCA
sqrt(mean((test_response - oospred.pca)^2))

[1] 39.82125

We can now present all out-of-sample MSPEs for all data sets in a summary table. We select
the tuning parameters 𝜆 and 𝑝 from the table above.

Data Set OLS Ridge Lasso PCR
Small 52.44 52.47 52.45 52.48
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Data Set OLS Ridge Lasso PCR
Large 61.89 39.1 39.34 39.82
Very Large - 39.39 39.42 39.95

OLS is infeasible in the very large dataset because 𝑘 > 𝑛. Ridge, lasso, and PCR perform
similarly well, in particular in the large and the very large data set.

13.7 R-codes

methods-sec13.R
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Part V

E) Time Series Methods
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14 Forecasting Models

14.1 Basic time series models

Consider two time series 𝑌𝑡 and 𝑍𝑡 for 𝑡 = 1, … , 𝑇 . The index 𝑡 is used instead of 𝑖 because
observations correspond to time points, not individuals. 𝑇 represents the sample size, i.e., the
number of observed time periods.

Here are some core linear time series forecasting models:

1) Autoregressive model, AR(𝑝):

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + … + 𝛼𝑝𝑌𝑡−𝑝 + 𝑢𝑡

2) Distributed lag model, DL(𝑞):

𝑌𝑡 = 𝛼 + 𝛿1𝑍𝑡−1 + … + 𝛿𝑞𝑍𝑡−𝑞 + 𝑢𝑡

3) Autoregressive distributed lag model, ADL(𝑝,𝑞):

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + … + 𝛼𝑝𝑌𝑡−𝑝 + 𝛿1𝑍𝑡−1 + … + 𝛿𝑞𝑍𝑡−𝑞 + 𝑢𝑡

In these equations, 𝑝 is the number of lags of the dependent variable 𝑌𝑡, 𝑞 is the number of
lags of the explanatory variable 𝑍𝑡, and 𝑢𝑡 is a mean zero error (shock) that is conditional
mean independent of the regressors. These models can be estimated by OLS.

The AR, DL, and ADL models can be used for forecasting because the regressors lie in the
past relative to the dependent variable. Further exogenous variables can also be included.

If the model parameters are known and the sample is given for 𝑡 = 1, … , 𝑇 , we can compute
the out-of-sample predicted value for 𝑡 = 𝑇 + 1, which defines a population forecast for 𝑌𝑇 +1
(1-step ahead forecast). E.g. in the ADL model, we have

𝑌𝑇 +1|𝑇 = 𝛼0 + 𝛼1𝑌𝑇 + … + 𝛼𝑝𝑌𝑇 −𝑝+1 + 𝛿1𝑍𝑇 + … + 𝛿𝑞𝑍𝑇 −𝑞+1.

Using estimated coefficients, we have the 1-step ahead forecast

𝑌𝑇 +1|𝑇 = ̂𝛼0 + ̂𝛼1𝑌𝑇 + … + ̂𝛼𝑝𝑌𝑇 −𝑝+1 + ̂𝛿1𝑍𝑇 + … + ̂𝛿𝑞𝑍𝑇 −𝑞+1.

Because regression models with time series variables typically include lags of variables, we call
them dynamic regression models.
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14.2 Dynamic regressions

In general, let 𝑌𝑡 be the univariate dependent time series variable, and 𝑋𝑋𝑋𝑡 = (𝑋1𝑡, … , 𝑋𝑘𝑡)′

be the 𝑘-variate regressor time series vector. A time series regression is a linear regression
model

𝑌𝑡 = 𝑋𝑋𝑋′
𝑡𝛽𝛽𝛽 + 𝑢𝑡, 𝑡 = 1, … , 𝑇 , (14.1)

where the error term satisfies 𝐸[𝑢𝑡|𝑋𝑋𝑋𝑡] = 0.

The vector of regressors 𝑋𝑋𝑋𝑡 may contain multiple exogenous variables and its lags, but also
lags of the dependent variable. E.g., in the ADL(𝑝,𝑞) model, we have 𝑘 = 𝑝 + 𝑞 + 1 and

𝑋𝑋𝑋𝑡 = (1, 𝑌𝑡−1, … , 𝑌𝑡−𝑝, 𝑍𝑡−1, … , 𝑍𝑡−𝑞)′,
𝛽𝛽𝛽 = (𝛼0, 𝛼1, … , 𝛼𝑝, 𝛿1, … , 𝛿𝑞)′.

The OLS estimator is
̂𝛽𝛽𝛽 = (

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑡𝑋𝑋𝑋′
𝑡)

−1
(

𝑇
∑
𝑡=1

𝑋𝑋𝑋𝑡𝑌𝑡).

To compute 𝑋𝑋𝑋1 in ̂𝛽𝛽𝛽 for dynamic models, we need a few additional observations at the beginning
of the sample. I.e., for the ADL(p,q) model, 𝑌𝑡 must be observed from 𝑡 = 1 − 𝑝, … , 𝑇 and 𝑍𝑡
from 𝑡 = 1 − 𝑞, … , 𝑇 .

14.3 One-step ahead forecast

In forecasting models, the regressors contain only variables that lie in the past of 𝑡. Therefore,
𝑋𝑋𝑋𝑇 +1 is known from the sample, and the one-step ahead forecast can be computed as

𝑌𝑇 +1|𝑇 = 𝑋𝑋𝑋′
𝑇 +1 ̂𝛽𝛽𝛽.

The forecast error is

𝑓𝑇 +1|𝑇 = 𝑌𝑇 +1 − 𝑌𝑇 +1|𝑇

= 𝑋𝑋𝑋′
𝑇 +1𝛽𝛽𝛽 + 𝑢𝑇 +1 − 𝑋𝑋𝑋′

𝑇 +1 ̂𝛽𝛽𝛽
= 𝑢𝑇 +1 + 𝑋𝑋𝑋′

𝑇 +1(𝛽𝛽𝛽 − ̂𝛽𝛽𝛽)
≈ 𝑢𝑇 +1.

The last step holds for large 𝑇 if the OLS estimator ̂𝛽𝛽𝛽 is consistent.

To obtain a (1 − 𝛼)-forecast interval 𝐼(𝑇 +1|𝑇 ;1−𝛼) with

lim
𝑇 →∞

𝑃(𝑌𝑇 +1 ∈ 𝐼(𝑇 +1|𝑇 ;1−𝛼)) = 1 − 𝛼, (14.2)
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we require a distributional assumption for the error term. Unfortunately, the central limit
theorem will not help us here. The most common assumption is to assume normally distributed
errors 𝑢𝑡 ∼ 𝒩(0, 𝜎2), but also a t-distribution is possible if there is evidence that the errors
have a higher kurtosis.

If the errors are normally distributed and the OLS estimator is consistent, it follows that

lim
𝑇 →∞

𝑃(
𝑓𝑇 +1|𝑇

𝑠�̂�
≤ 𝑐) = Φ(𝑐),

where Φ is the standard normal CDF. Consequently, Equation 14.2 holds with

𝐼(𝑇 +1|𝑇 ;1−𝛼) = [𝑌𝑇 +1|𝑇 − 𝑧(1− 𝛼
2 )𝑠�̂�; 𝑌𝑇 +1|𝑇 + 𝑧(1− 𝛼

2 )𝑠�̂�],

where 𝑠�̂� is the standard error of regression (SER).

14.4 Dynamic models in R

14.4.1 An AR model for GDP

library(dynlm) # for dynamic linear models
data(gdpgr, package = "teachingdata")
plot(gdpgr, main = "Nominal monthly GDP growth Germany")
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Consider the AR(4) model for GDP growth:

𝑔𝑑𝑝𝑡 = 𝛼0 + 𝛼1𝑔𝑑𝑝𝑡−1 + 𝛼2𝑔𝑑𝑝𝑡−2 + 𝛼3𝑔𝑑𝑝𝑡−3 + 𝛼4𝑔𝑑𝑝𝑡−4 + 𝑢𝑡.

One challenge is to define the lagged regressors correctly. Because we have four lags, we need
𝑇 + 4 observations from 𝑡 = −3, … , 𝑇 to compute the OLS estimate. The embed() function is
useful to get the regressor matrix with the shifted variables with lags from 1 to 4:

embed(gdpgr,5)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0201337715 0.0586045514 0.0732642826 0.0651053628 0.0874092348
[2,] 0.0355929601 0.0201337715 0.0586045514 0.0732642826 0.0651053628
[3,] 0.0305325110 0.0355929601 0.0201337715 0.0586045514 0.0732642826
[4,] 0.0267275508 0.0305325110 0.0355929601 0.0201337715 0.0586045514
[5,] 0.0504532397 0.0267275508 0.0305325110 0.0355929601 0.0201337715
[6,] 0.0372759162 0.0504532397 0.0267275508 0.0305325110 0.0355929601
[7,] 0.0427747084 0.0372759162 0.0504532397 0.0267275508 0.0305325110
[8,] 0.0453798176 0.0427747084 0.0372759162 0.0504532397 0.0267275508
[9,] 0.0385844643 0.0453798176 0.0427747084 0.0372759162 0.0504532397
[10,] 0.0404915385 0.0385844643 0.0453798176 0.0427747084 0.0372759162
[11,] 0.0353187251 0.0404915385 0.0385844643 0.0453798176 0.0427747084
[12,] 0.0260446862 0.0353187251 0.0404915385 0.0385844643 0.0453798176
[13,] 0.0125448113 0.0260446862 0.0353187251 0.0404915385 0.0385844643
[14,] 0.0116162653 0.0125448113 0.0260446862 0.0353187251 0.0404915385
[15,] 0.0172743837 0.0116162653 0.0125448113 0.0260446862 0.0353187251
[16,] 0.0145381167 0.0172743837 0.0116162653 0.0125448113 0.0260446862
[17,] 0.0064074433 0.0145381167 0.0172743837 0.0116162653 0.0125448113
[18,] 0.0286181410 0.0064074433 0.0145381167 0.0172743837 0.0116162653
[19,] 0.0240593231 0.0286181410 0.0064074433 0.0145381167 0.0172743837
[20,] 0.0222180983 0.0240593231 0.0286181410 0.0064074433 0.0145381167
[21,] 0.0458560754 0.0222180983 0.0240593231 0.0286181410 0.0064074433
[22,] 0.0162997134 0.0458560754 0.0222180983 0.0240593231 0.0286181410
[23,] 0.0240238678 0.0162997134 0.0458560754 0.0222180983 0.0240593231
[24,] 0.0219259244 0.0240238678 0.0162997134 0.0458560754 0.0222180983
[25,] 0.0175312705 0.0219259244 0.0240238678 0.0162997134 0.0458560754
[26,] 0.0213872237 0.0175312705 0.0219259244 0.0240238678 0.0162997134
[27,] 0.0215996987 0.0213872237 0.0175312705 0.0219259244 0.0240238678
[28,] 0.0275603181 0.0215996987 0.0213872237 0.0175312705 0.0219259244
[29,] 0.0379630756 0.0275603181 0.0215996987 0.0213872237 0.0175312705
[30,] 0.0295828692 0.0379630756 0.0275603181 0.0215996987 0.0213872237
[31,] 0.0213309511 0.0295828692 0.0379630756 0.0275603181 0.0215996987
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[32,] 0.0075237667 0.0213309511 0.0295828692 0.0379630756 0.0275603181
[33,] 0.0299392612 0.0075237667 0.0213309511 0.0295828692 0.0379630756
[34,] 0.0246649062 0.0299392612 0.0075237667 0.0213309511 0.0295828692
[35,] 0.0280194737 0.0246649062 0.0299392612 0.0075237667 0.0213309511
[36,] 0.0356734942 0.0280194737 0.0246649062 0.0299392612 0.0075237667
[37,] 0.0014322600 0.0356734942 0.0280194737 0.0246649062 0.0299392612
[38,] 0.0138416969 0.0014322600 0.0356734942 0.0280194737 0.0246649062
[39,] 0.0235678950 0.0138416969 0.0014322600 0.0356734942 0.0280194737
[40,] 0.0077007205 0.0235678950 0.0138416969 0.0014322600 0.0356734942
[41,] 0.0083826875 0.0077007205 0.0235678950 0.0138416969 0.0014322600
[42,] 0.0032922145 0.0083826875 0.0077007205 0.0235678950 0.0138416969
[43,] 0.0047364761 0.0032922145 0.0083826875 0.0077007205 0.0235678950
[44,] 0.0079743278 0.0047364761 0.0032922145 0.0083826875 0.0077007205
[45,] 0.0270819565 0.0079743278 0.0047364761 0.0032922145 0.0083826875
[46,] 0.0337685936 0.0270819565 0.0079743278 0.0047364761 0.0032922145
[47,] 0.0136382992 0.0337685936 0.0270819565 0.0079743278 0.0047364761
[48,] 0.0172059191 0.0136382992 0.0337685936 0.0270819565 0.0079743278
[49,] 0.0006541173 0.0172059191 0.0136382992 0.0337685936 0.0270819565
[50,] 0.0139693816 0.0006541173 0.0172059191 0.0136382992 0.0337685936
[51,] 0.0134547959 0.0139693816 0.0006541173 0.0172059191 0.0136382992
[52,] 0.0167457829 0.0134547959 0.0139693816 0.0006541173 0.0172059191
[53,] 0.0430703460 0.0167457829 0.0134547959 0.0139693816 0.0006541173
[54,] 0.0312473976 0.0430703460 0.0167457829 0.0134547959 0.0139693816
[55,] 0.0382467143 0.0312473976 0.0430703460 0.0167457829 0.0134547959
[56,] 0.0526367957 0.0382467143 0.0312473976 0.0430703460 0.0167457829
[57,] 0.0561884737 0.0526367957 0.0382467143 0.0312473976 0.0430703460
[58,] 0.0466371217 0.0561884737 0.0526367957 0.0382467143 0.0312473976
[59,] 0.0474469210 0.0466371217 0.0561884737 0.0526367957 0.0382467143
[60,] 0.0378900574 0.0474469210 0.0466371217 0.0561884737 0.0526367957
[61,] 0.0295752497 0.0378900574 0.0474469210 0.0466371217 0.0561884737
[62,] 0.0379954321 0.0295752497 0.0378900574 0.0474469210 0.0466371217
[63,] 0.0178515785 0.0379954321 0.0295752497 0.0378900574 0.0474469210
[64,] -0.0099977546 0.0178515785 0.0379954321 0.0295752497 0.0378900574
[65,] -0.0528038611 -0.0099977546 0.0178515785 0.0379954321 0.0295752497
[66,] -0.0655685839 -0.0528038611 -0.0099977546 0.0178515785 0.0379954321
[67,] -0.0361084433 -0.0655685839 -0.0528038611 -0.0099977546 0.0178515785
[68,] -0.0083350789 -0.0361084433 -0.0655685839 -0.0528038611 -0.0099977546
[69,] 0.0372744742 -0.0083350789 -0.0361084433 -0.0655685839 -0.0528038611
[70,] 0.0492404647 0.0372744742 -0.0083350789 -0.0361084433 -0.0655685839
[71,] 0.0514080371 0.0492404647 0.0372744742 -0.0083350789 -0.0361084433
[72,] 0.0510942532 0.0514080371 0.0492404647 0.0372744742 -0.0083350789
[73,] 0.0665344115 0.0510942532 0.0514080371 0.0492404647 0.0372744742
[74,] 0.0511323253 0.0665344115 0.0510942532 0.0514080371 0.0492404647
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[75,] 0.0463615981 0.0511323253 0.0665344115 0.0510942532 0.0514080371
[76,] 0.0336752941 0.0463615981 0.0511323253 0.0665344115 0.0510942532
[77,] 0.0291605087 0.0336752941 0.0463615981 0.0511323253 0.0665344115
[78,] 0.0175460213 0.0291605087 0.0336752941 0.0463615981 0.0511323253
[79,] 0.0154886280 0.0175460213 0.0291605087 0.0336752941 0.0463615981
[80,] 0.0142225002 0.0154886280 0.0175460213 0.0291605087 0.0336752941
[81,] 0.0056581603 0.0142225002 0.0154886280 0.0175460213 0.0291605087
[82,] 0.0305069664 0.0056581603 0.0142225002 0.0154886280 0.0175460213
[83,] 0.0308774823 0.0305069664 0.0056581603 0.0142225002 0.0154886280
[84,] 0.0276026912 0.0308774823 0.0305069664 0.0056581603 0.0142225002
[85,] 0.0490999652 0.0276026912 0.0308774823 0.0305069664 0.0056581603
[86,] 0.0346488227 0.0490999652 0.0276026912 0.0308774823 0.0305069664
[87,] 0.0358017884 0.0346488227 0.0490999652 0.0276026912 0.0308774823
[88,] 0.0424204059 0.0358017884 0.0346488227 0.0490999652 0.0276026912
[89,] 0.0282154475 0.0424204059 0.0358017884 0.0346488227 0.0490999652
[90,] 0.0337444820 0.0282154475 0.0424204059 0.0358017884 0.0346488227
[91,] 0.0331285814 0.0337444820 0.0282154475 0.0424204059 0.0358017884
[92,] 0.0373844847 0.0331285814 0.0337444820 0.0282154475 0.0424204059
[93,] 0.0343197078 0.0373844847 0.0331285814 0.0337444820 0.0282154475
[94,] 0.0487914477 0.0343197078 0.0373844847 0.0331285814 0.0337444820
[95,] 0.0299897045 0.0487914477 0.0343197078 0.0373844847 0.0331285814
[96,] 0.0282785948 0.0299897045 0.0487914477 0.0343197078 0.0373844847
[97,] 0.0459681771 0.0282785948 0.0299897045 0.0487914477 0.0343197078
[98,] 0.0279843861 0.0459681771 0.0282785948 0.0299897045 0.0487914477
[99,] 0.0433567397 0.0279843861 0.0459681771 0.0282785948 0.0299897045
[100,] 0.0479289263 0.0433567397 0.0279843861 0.0459681771 0.0282785948
[101,] 0.0304271605 0.0479289263 0.0433567397 0.0279843861 0.0459681771
[102,] 0.0395955660 0.0304271605 0.0479289263 0.0433567397 0.0279843861
[103,] 0.0219910435 0.0395955660 0.0304271605 0.0479289263 0.0433567397
[104,] 0.0268311490 0.0219910435 0.0395955660 0.0304271605 0.0479289263
[105,] 0.0330945264 0.0268311490 0.0219910435 0.0395955660 0.0304271605
[106,] 0.0228782682 0.0330945264 0.0268311490 0.0219910435 0.0395955660
[107,] 0.0418425360 0.0228782682 0.0330945264 0.0268311490 0.0219910435
[108,] 0.0292072118 0.0418425360 0.0228782682 0.0330945264 0.0268311490
[109,] 0.0152491384 0.0292072118 0.0418425360 0.0228782682 0.0330945264
[110,] -0.0811063878 0.0152491384 0.0292072118 0.0418425360 0.0228782682
[111,] -0.0171806194 -0.0811063878 0.0152491384 0.0292072118 0.0418425360
[112,] -0.0023126329 -0.0171806194 -0.0811063878 0.0152491384 0.0292072118
[113,] 0.0003123391 -0.0023126329 -0.0171806194 -0.0811063878 0.0152491384
[114,] 0.1149645541 0.0003123391 -0.0023126329 -0.0171806194 -0.0811063878
[115,] 0.0668135553 0.1149645541 0.0003123391 -0.0023126329 -0.0171806194
[116,] 0.0631410541 0.0668135553 0.1149645541 0.0003123391 -0.0023126329
[117,] 0.0871829292 0.0631410541 0.0668135553 0.1149645541 0.0003123391

180



[118,] 0.0743265551 0.0871829292 0.0631410541 0.0668135553 0.1149645541
[119,] 0.0564924452 0.0743265551 0.0871829292 0.0631410541 0.0668135553
[120,] 0.0602844287 0.0564924452 0.0743265551 0.0871829292 0.0631410541
[121,] 0.0695948062 0.0602844287 0.0564924452 0.0743265551 0.0871829292
[122,] 0.0590362127 0.0695948062 0.0602844287 0.0564924452 0.0743265551
[123,] 0.0578294655 0.0590362127 0.0695948062 0.0602844287 0.0564924452
[124,] 0.0583002102 0.0578294655 0.0590362127 0.0695948062 0.0602844287

Y = embed(gdpgr,5)[,1]
X = embed(gdpgr,5)[,-1]
lm(Y~X)

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) X1 X2 X3 X4

0.01377 0.61058 0.12867 0.15959 -0.37862

An alternative is the dynlm() function from the dynlm package (dynamic linear model). It
has the option to use the lag operator 𝐿

fitAR = dynlm(gdpgr ~ L(gdpgr) + L(gdpgr,2) + L(gdpgr,3) + L(gdpgr,4))
fitAR

Time series regression with "ts" data:
Start = 1993(1), End = 2023(4)

Call:
dynlm(formula = gdpgr ~ L(gdpgr) + L(gdpgr, 2) + L(gdpgr, 3) +

L(gdpgr, 4))

Coefficients:
(Intercept) L(gdpgr) L(gdpgr, 2) L(gdpgr, 3) L(gdpgr, 4)

0.01377 0.61058 0.12867 0.15959 -0.37862

You can also use dynlm(gdpgr ~ L(gdpgr,1:4)). The built-in function ar.ols() can be
used as well, but it must be configured correctly:
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ar.ols(gdpgr, aic=FALSE, order.max = 4, demean = FALSE, intercept = TRUE)

Let’s predict the next value for the GDP growth, 𝑔𝑑𝑝𝑇 +1. We use the regressors 𝑋𝑋𝑋𝑇 +1 =
(1, 𝑔𝑑𝑝𝑇 , 𝑔𝑑𝑝𝑇 −1, 𝑔𝑑𝑝𝑇 −2, 𝑔𝑑𝑝𝑇 −3)′:

𝑔𝑑𝑝𝑇 +1|𝑇 = 𝑋𝑋𝑋′
𝑇 +1𝛽𝛽𝛽.

## Define X_{T+1}
latestX = c(1, tail(gdpgr, 4))
## compute one-step ahead forecast
coef(fitAR) %*% latestX

[,1]
[1,] 0.05101086

The above value is only a point forecast. Let’s also compute 90% and 99% forecast intervals.

## One-step ahead point forecast
Yhat = coef(fitAR) %*% latestX
## standard error of regression
SER = summary(fitAR)$sigma
## Plot gdp growth
plot(gdpgr, main = "Forecast intervals for GDP growth")
## Plot point forecast
points(2024, Yhat, col="red", lwd = 3)
## Plot 90% forecast interval
points(2024, Yhat+SER*qnorm(0.95), col="blue", lwd=2)
points(2024, Yhat-SER*qnorm(0.95), col="blue", lwd=2)
## Plot 99% forecast interval
points(2024, Yhat+SER*qnorm(0.995), col="blue", lwd=1)
points(2024, Yhat-SER*qnorm(0.995), col="blue", lwd=1)

The forecast intervals are quite large, which is not too surprising given the simplicity of the
model.

14.4.2 An ADL model for gasoline prices

If 𝑋𝑡 is a weekly price, then the return (the continuous growth rate) is log(𝑋𝑡) − log(𝑋𝑡−1),
which is computed in R as diff(log(X)).
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We consider an ADL(4,4) model regressing the weekly gasoline price returns on oil price
returns:

𝑔𝑎𝑠𝑡 = 𝛼0 + 𝛼1𝑔𝑎𝑠𝑡−1 + 𝛼2𝑔𝑎𝑠𝑡−2 + 𝛼3𝑔𝑎𝑠𝑡−3 + 𝛼4𝑔𝑎𝑠𝑡−4
+ 𝛿1𝑜𝑖𝑙𝑡−1 + +𝛿2𝑜𝑖𝑙𝑡−2 + 𝛿3𝑜𝑖𝑙𝑡−3 + 𝛿4𝑜𝑖𝑙𝑡−4 + 𝑢𝑡

We can use the zoo class to assign time points to observations. The base R ts (time series)
class can only handle time series with a fixed and regular number of observations per year such
as yearly, quarterly, or monthly data. Weekly data do not have exactly the same number of
observations per year, which is why we use the more flexible zoo class. zoo is part of the AER
package. zoo(mytimeseries, mydates) defines a zooobject.

data(gasoil, package="teachingdata2")
GASOLINE = zoo(gasoil$gasoline, gasoil$date)
BRENT = zoo(gasoil$brent, gasoil$date)
gas = diff(log(GASOLINE))
oil = diff(log(BRENT))
par(mfrow = c(2,2))
plot(GASOLINE, main="Gasoline prices")
plot(BRENT, main="Oil prices")
plot(gas, main="Gasoline returns")
plot(oil, main="Oil returns")
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fitADL = dynlm(gas ~ L(gas, 1:4) + L(oil, 1:4))
fitADL

Time series regression with "zoo" data:
Start = 1991-02-25, End = 2023-04-03

Call:
dynlm(formula = gas ~ L(gas, 1:4) + L(oil, 1:4))

Coefficients:
(Intercept) L(gas, 1:4)1 L(gas, 1:4)2 L(gas, 1:4)3 L(gas, 1:4)4
0.0002527 0.3633626 0.0582818 0.0527356 -0.0143211

L(oil, 1:4)1 L(oil, 1:4)2 L(oil, 1:4)3 L(oil, 1:4)4
0.1241477 0.0144996 0.0153132 0.0137106

latestX = c(1, tail(gas,4), tail(oil,4))
## one-step ahead forecast
latestX %*% coef(fitADL)

[,1]
[1,] -0.002331957
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14.5 Identification

Consider again the time series regression model of Equation 14.1. Under the regularity condi-
tion that the design matrix 𝐸[𝑋𝑋𝑋𝑡𝑋𝑋𝑋′

𝑡] is invertible (no multicollinearity), the coefficient vector
𝛽𝛽𝛽 can be written as

𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑡𝑋𝑋𝑋′
𝑡])−1𝐸[𝑋𝑋𝑋𝑡𝑌𝑡]. (14.3)

In order for 𝛽𝛽𝛽 in Equation 14.3 to make sense, it must have same value for all time points 𝑡.
That is, 𝐸[𝑋𝑋𝑋𝑡𝑋𝑋𝑋′

𝑡] and 𝐸[𝑋𝑋𝑋𝑡𝑌𝑡] must be time invariant. To ensure this, we assume that the
𝑘 + 1 vector 𝑍𝑍𝑍𝑡 = (𝑌𝑡,𝑋𝑋𝑋′

𝑡)′ is stationary.

Recall the definition of stationarity for a multivariate time series:

Stationary univariate time series

A time series 𝑌𝑡 is called stationary if the mean 𝜇 and the autocovariance function 𝛾(𝜏)
do not depend on the time point 𝑡. That is,

𝜇 ∶= 𝐸[𝑌𝑡] < ∞, for all 𝑡,

and
𝛾(𝜏) ∶= 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝜏) < ∞ for all 𝑡 and 𝜏.

The autocorrelation of order 𝜏 is

𝜌(𝜏) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝜏)
𝑉 𝑎𝑟[𝑌𝑡]

= 𝛾(𝜏)
𝛾(0) , 𝜏 ∈ ℤ.

The autocorrelations of stationary time series typically decay to zero quite quickly as 𝜏 in-
creases, i.e., 𝜌(𝜏) → 0 as 𝜏 → ∞. Observations close in time may be highly correlated, but
observations farther apart have little dependence.

We define the stationarity concept for multivariate time series analogously:

Stationary multivariate time series

A 𝑞-variate time series 𝑍𝑍𝑍𝑡 = (𝑍1𝑡, … , 𝑍𝑞𝑡)′ is called stationary if each entry 𝑍𝑖𝑡 of 𝑍𝑍𝑍𝑡 is a
stationary time series, and, in addition, the cross autocovariances do not depend on 𝑡:

𝐶𝑜𝑣(𝑍𝑖𝑠, 𝑍𝑗,𝑠−𝜏) = 𝐶𝑜𝑣(𝑍𝑖𝑡, 𝑍𝑗,𝑡−𝜏) < ∞

for all 𝜏 ∈ ℤ and for all 𝑠, 𝑡 = 1, … , 𝑇 , and 𝑖, 𝑗 = 1, … , 𝑞.

The mean vector of 𝑍𝑍𝑍𝑡 is
𝜇𝜇𝜇 = (𝐸[𝑍1𝑡], … , 𝐸[𝑍𝑞𝑡])

′
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and the autocovariance matrices for 𝜏 ≥ 0 are

Γ(𝜏) = 𝐸[(𝑍𝑍𝑍𝑡 − 𝜇𝜇𝜇)(𝑍𝑍𝑍𝑡−𝜏 − 𝜇𝜇𝜇)′]

= ⎛⎜
⎝

𝐶𝑜𝑣(𝑍1,𝑡, 𝑍1,𝑡−𝜏) … 𝐶𝑜𝑣(𝑍1,𝑡, 𝑍𝑞,𝑡−𝜏)
⋮ ⋱ ⋮

𝐶𝑜𝑣(𝑍𝑞,𝑡, 𝑍1,𝑡−𝜏) … 𝐶𝑜𝑣(𝑍𝑞,𝑡, 𝑍𝑞,𝑡−𝜏)
⎞⎟
⎠

A time series 𝑌𝑡 is nonstationary if the mean 𝐸[𝑌𝑡] or the autocovariances 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝜏)
change with 𝑡, i.e., if there exist time points 𝑠 ≠ 𝑡 with

𝐸[𝑌𝑡] ≠ 𝐸[𝑌𝑠] or 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝜏) ≠ 𝐶𝑜𝑣(𝑌𝑠, 𝑌𝑠−𝜏)

for some 𝜏 .

14.6 AR(1) process

To learn when a time series is stationary and when it is not, it is helpful to study the autore-
gressive process of order one, AR(1). It is defined as

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑢𝑡, (14.4)

where 𝑢𝑡 is an i.i.d. sequence of increments with 𝐸[𝑢𝑡] = 0 and 𝑉 𝑎𝑟[𝑢𝑡] = 𝜎2
𝑢.

If |𝜙| < 1, the AR(1) process is stationary with

𝜇 = 0, 𝛾(𝜏) = 𝜙𝜏𝜎2
𝑢

1 − 𝜙2 , 𝜌(𝜏) = 𝜙𝜏 , 𝜏 ≥ 0.

Its autocorrelations 𝜌(𝜏) = 𝜙𝜏 decay exponentially in the lag order 𝜏 .

Let’s simulate a stationary AR(1) process. The function filter(u, phi, "recursive")
computes Equation 14.4 for parameter phi, a given sequence u and starting value 𝑢0 = 0.

## simulate AR1 with parameter phi=0.8,
## standard normal innovations, and T=400:
set.seed(123)
u = rnorm(400)
AR1 = stats::filter(u, 0.8, "recursive")
par(mfrow = c(1,2))
plot(AR1, main="Simulated AR(1) process")
acf(AR1)
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On the right hand side you find the values for the sample autocorrelation function (ACF),
which is defined as

̂𝜌(𝜏) =
∑𝑇

𝑡=𝜏+1(𝑌𝑡 − 𝑌 )(𝑌𝑡−𝜏 − 𝑌 )
∑𝑇

𝑡=1(𝑌𝑡 − 𝑌 )2
.

The sample autocorrelations of the AR(1) process with parameter 𝜙 = 0.8 converge exponen-
tially to 0 as 𝜏 → ∞.

The simple random walk is an example of a nonstationary time series process. It is an
AR(1) process with 𝜙 = 1 and starting value 𝑌0 = 0, i.e.,

𝑌𝑡 = 𝑌𝑡−1 + 𝑢𝑡, 𝑡 ≥ 1.

By backward substitution, it can be expressed as the cumulative sum

𝑌𝑡 =
𝑡

∑
𝑗=1

𝑢𝑗.

It is nonstationary since 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝜏) = (𝑡 − 𝜏)𝜎2
𝑢, which depends on 𝑡 and becomes larger as

𝑡 gets larger.

## simulate AR1 with parameter phi=1 (random walk):
RW = stats::filter(u, 1, "recursive")
par(mfrow = c(1,2))
plot(RW, main= "Simulated random walk")
acf(RW)

The ACF plots indicate the dynamic structure of the time series and whether they can be
regarded as a stationary time series. The ACF of AR1 tends to zero quickly. It can be treated
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Simulated random walk
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as stationary time series. The ACF of RW tends to zero very slowly, indicating a high persistence.
This time series is non-stationary.

14.7 Autocorrelations of GDP

data(gdp, package="teachingdata")
par(mfrow = c(2,2))
plot(gdp, main="Nominal GDP Germany")
plot(gdpgr, main = "Annual nominal GDP growth")
acf(gdp)
acf(gdpgr)

The ACF plots indicate that nominal GDP is nonstationary, while GDP growth is stationary.
The asymptotic normality result for OLS is not valid if nonstationary time series are used.

14.8 R-codes

methods-sec14.R
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15 Time Series Inference

library(AER) # for sandwich, lmtest, and zoo
library(dynlm) # for dynamic regression
library(BVAR) # for the fred_qd data

In the previous section, we considered time series regression models tailored for forecasting,
where the regressors are based on past data relative to the dependent variable.

Of course, the regressors may also be contemporaneous as in the static time series regres-
sion

𝑌𝑡 = 𝛼 + 𝛿𝑍𝑡 + 𝑢𝑡.
The ADL model can also be extended by a contemporaneous exogenous variable:

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + … + 𝛼𝑝𝑌𝑡−𝑝 + 𝛿0𝑍𝑡 + 𝛿1𝑍𝑡−1 + … + 𝛿𝑞𝑍𝑡−𝑞 + 𝑢𝑡.

Time series regressions have the general form

𝑌𝑡 = 𝑋𝑋𝑋′
𝑡𝛽𝛽𝛽 + 𝑢𝑡, 𝑡 = 1, … , 𝑇 . (15.1)

15.1 Assumptions for time series regression

Compared to cross-sectional regression, time series regressions require a stationarity condition
instead of the i.i.d. assumption. Moreover, the error must be conditional mean independent
of all past values, which indicates that the error represents the new information (shock) that
was not available before time 𝑡. Variables that are conditional mean independent of the past
are also called martingale difference sequence.

For the dynamic linear regression Equation 15.1 we make the following assumptions:

• (A1-dyn) martingale difference sequence: 𝐸[𝑢𝑡|𝑋𝑋𝑋𝑡,𝑋𝑋𝑋𝑡−1, …] = 0.

• (A2-dyn) stationary processes: 𝑍𝑍𝑍𝑡 = (𝑌𝑡,𝑋𝑋𝑋′
𝑡)′ is a stationary time series with the

property that 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 become independent as 𝜏 gets large.

• (A3-dyn) large outliers unlikely: 0 < 𝐸[𝑌 4
𝑡 ] < ∞, 0 < 𝐸[𝑋4

𝑡𝑙] < ∞ for all 𝑙 = 1, … , 𝑘.
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• (A4-dyn) no perfect multicollinearity: 𝑋𝑋𝑋 has full column rank.

The precise mathematical statement for “becoming independent as 𝜏 gets large” is omitted
here. It can be formulated with respect to a so-called strong mixing condition. It essentially
requires that the dependency between 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 decrease as 𝜏 → ∞ with a certain rate so
that 𝑍𝑍𝑍𝑡 and 𝑍𝑍𝑍𝑡−𝜏 are “almost independent” if 𝜏 is large enough.

Under (A1-dyn)–(A4-dyn), the OLS estimator ̂𝛽𝛽𝛽 is consistent for 𝛽𝛽𝛽 and asymptotically nor-
mal.

15.2 Time series standard errors

We have
̂𝛽𝑙 − 𝛽𝑙

𝑠𝑑( ̂𝛽𝑙|𝑋𝑋𝑋)
𝐷→ 𝒩(0, 1) as 𝑇 → ∞.

The standard deviation 𝑠𝑑( ̂𝛽𝑙|𝑋𝑋𝑋) is the squareroot of the (𝑙, 𝑙)-entry of

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋)(𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

where 𝐷𝐷𝐷 = 𝑉𝑉𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋].
If the errors are uncorrelated, i.e. 𝐶𝑜𝑣(𝑢𝑡, 𝑢𝑡−𝜏) = 0 for 𝜏 ≥ 1, the matrix 𝐷𝐷𝐷 is diagonal
as in Section 5, and heteroskedasticity-consistent standard errors can be used. If the errors
exhibit autocorrelation, then 𝐷𝐷𝐷 has an arbitrary form with off diagonal entries decaying slowly
to zero as the distance to the main diagonal increases. In this case, heteroskedasticity and
autorcorrelation-consistent (HAC) standard errors must be used.

You can check potential autocorrelation in the errors by consulting the ACF plot for the
residuals:

data(gasoil, package="teachingdata2")
gas = zoo(diff(log(gasoil$gasoline)), gasoil$date)
oil = zoo(diff(log(gasoil$brent)), gasoil$date)
DL = dynlm(gas ~ L(oil, 1:2))
ADL = dynlm(gas ~ L(gas, 1:2) + L(oil, 1:2))
par(mfrow=c(1,2))
acf(DL$residuals, main="DL model")
acf(ADL$residuals, main = "ADL model")

The residuals in the DL(2) model

𝑔𝑎𝑠𝑡 = 𝛼 + 𝛿1𝑜𝑖𝑙𝑡−1 + 𝛿2𝑜𝑖𝑙𝑡−2 + 𝑢𝑡
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indicate significant autocorrelation in the first few lags. The sample autocorrelations are above
the blue dashed threshold.

The blue threshold indicates the critical value 1.96/
√

𝑇 for a test for the null hypothesis
𝐻0 ∶ 𝜌(𝜏) = 0.

We should use HAC standard errors:

coeftest(ADL, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00022028 0.00038647 0.5700 0.56877
L(gas, 1:2)1 0.37403773 0.06264798 5.9705 2.882e-09 ***
L(gas, 1:2)2 0.11072881 0.04516219 2.4518 0.01432 *
L(oil, 1:2)1 0.12355493 0.01020577 12.1064 < 2.2e-16 ***
L(oil, 1:2)2 0.00754501 0.01121716 0.6726 0.50127
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The residuals in the ADL(2,2) model

𝑔𝑎𝑠𝑡 = 𝛼0 + 𝛼1𝑔𝑎𝑠𝑡−1 + 𝛼2𝑔𝑎𝑠𝑡−2 + 𝛿1𝑜𝑖𝑙𝑡−1 + 𝛿2𝑜𝑖𝑙𝑡−2 + 𝑢𝑡

indicate no autocorrelation in the error term. We can use HC standard errors:
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coeftest(DL, vcov. = vcovHAC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.00042119 0.00059160 0.7120 0.4766
L(oil, 1:2)1 0.17029082 0.01068906 15.9313 < 2.2e-16 ***
L(oil, 1:2)2 0.08437856 0.01128826 7.4749 1.239e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The following section highlights the importance of the variables being stationary in a time
series regression.

15.3 Spurious correlation

Spurious correlation occurs when two unrelated time series 𝑌𝑡 and 𝑋𝑡 have zero population cor-
relation (𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡) = 0) but exhibit a large sample correlation coefficient due to coincidental
patterns or trends within the sample data.

Here are some examples of nonsense correlations: tylervigen.com/spurious-correlations.

Nonsense correlations may occur if the underlyung time series process is nonstationary.

15.3.1 Simulation evidence

Let’s simulate two independent AR(1) processes:

𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑢𝑡, 𝑋𝑡 = 𝛼𝑋𝑡−1 + 𝑣𝑡,

for 𝑡 = 1, … , 200, where 𝑢𝑡 and 𝑣𝑡 are i.i.d. standard normal. If 𝛼 = 0.5, the processes are
stationary. If 𝛼 = 1, the processes are nonstationary (random walk).

In any case, the population covariance is zero:

𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡) = 0.

Therefore, we expect that the sample correlation is zero as well:
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set.seed(121)
## Plot two independent AR(1) processes
u = rnorm(200)
v = rnorm(200)
Y1 = stats::filter(u, 0.5, "recursive")
X1 = stats::filter(v, 0.5, "recursive")
par(mfrow = c(1,2))
plot(Y1, main = "alpha = 0.5")
lines(X1, col="blue")
Y2 = stats::filter(u, 1, "recursive")
X2 = stats::filter(v, 1, "recursive")
plot(Y2, main = "alpha = 1")
lines(X2, col="blue")
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## Squared sample correlation for alpha = 0.5:
cor(Y1,X1)^2

[1] 0.0214327

## Squared sample correlation for alpha = 1:
cor(Y2,X2)^2

[1] 0.325291

194



The squared sample correlation is equal to the R-squared of a simple regression of 𝑌𝑡 on
𝑋𝑡. The R-squared for the two independent stationary time series is close to zero, and the
R-squared for the two independent nonstationary time series is unreasonably large.

The correlation of the differenced series is close to zero:

cor(diff(Y2), diff(X2))^2

[1] 0.02193921

Of course, a large sample correlation of two uncorrelated series could occur by chance. Let’s
repeat the simulation 10 times. Still, in many cases, the R-squared for the nonstationary series
is much higher than expected:

## Simulate two independent AR(1) processes and R-squared
R2 = function(alpha, n=200){
u = rnorm(n)
v = rnorm(n)
Y = stats::filter(u, alpha, "recursive")
X = stats::filter(v, alpha, "recursive")
return(cor(Y,X)^2)

}
## Get R-squared results with alpha = 0.5
c(R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200), R2(0.5, 200)) |> round(4)

[1] 0.0052 0.0038 0.0014 0.0081 0.0020 0.0044 0.0096 0.0187 0.0102 0.0190

## Get R-squared results with alpha = 1
c(R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200), R2(1, 200)) |> round(4)

[1] 0.0001 0.4746 0.3424 0.1782 0.4056 0.0385 0.1625 0.2406 0.3836 0.3570

Increasing the sample size to 𝑇 = 1000 gives a similar picture:

c(R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000), R2(1, 1000)) |> round(4)

[1] 0.2365 0.0019 0.0215 0.4754 0.0425 0.2173 0.0030 0.4104 0.6846 0.3555
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The reason is that the OLS estimator is inconsistent if two independent random walks are
regressed on each other. The key problem is that already simple moment statistics such as the
sample mean or sample correlation are inconsistent for random walks. The behavior of the
sample mean or OLS coefficients is driven by the stochastic path of the random walk.

Two completely unrelated random walks might share common upward and downward drifts
by chance, which can produce high sample correlations although the population correlation is
zero.

15.3.2 Real-world spurious correlations

The FRED-QD database offers a comprehensive collection of quarterly U.S. macroeconomic
time series data. A subset of this data is contained in the package BVAR. See the appendix of
this paper for a detailed description of the data.

We expect no relationship between the labor force participation rate and the Canada US
exchange rate. However, the sample correlation coefficient is extremely high:

data(fred_qd, package = "BVAR")
par(mfrow=c(1,2))
plot(fred_qd$CIVPART, main="Labor force participation rate", type = "l")
plot(fred_qd$EXCAUSx, main="Canada US exchange rate", type = "l")
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cor(fred_qd$CIVPART, fred_qd$EXCAUSx)

196

https://research.stlouisfed.org/econ/mccracken/fred-databases
https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-005.pdf
https://s3.amazonaws.com/real.stlouisfed.org/wp/2020/2020-005.pdf


[1] 0.648879

plot(diff(fred_qd$CIVPART), main="Differenced CIVPART", type = "l")
plot(diff(fred_qd$EXCAUSx), main="Differenced EXCAUS", type = "l")
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cor(diff(fred_qd$CIVPART), diff(fred_qd$EXCAUSx))

[1] -0.03030723

The sample correlation of the differenced series indicates no relationship.

15.4 Testing for stationarity

The ACF plot provides a useful tool to decide whether a time series exhibits stationary or
nonstationary behavior. We can also run a hypothesis test for the hypothesis that a series is
nonstationary against the alternative that it is stationary.

15.4.1 Dickey Fuller test

Consider the AR(1) plus constant model:

𝑌𝑡 = 𝑐 + 𝜙𝑌𝑡−1 + 𝑢𝑡, (15.2)
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where 𝑢𝑡 is an i.i.d. zero mean sequence.

𝑌𝑡 is stationary if |𝜙| < 1 and nonstationary if 𝜙 = 1 (the cases 𝜙 > 1 and 𝜙 ≤ −1 lead to
exponential or oscillating behavior and are ignored here).

Let’s consider the hypotheses

𝐻0 ∶ 𝜙 = 1⏟⏟⏟⏟⏟
nonstationarity

𝑣𝑠. 𝐻1 ∶ |𝜙| < 1⏟⏟⏟⏟⏟
stationarity

To test 𝐻0, we can run a t-test for 𝜙 = 1. The t-statistic is

𝑍𝜙 =
̂𝜙 − 1

𝑠𝑒( ̂𝜙)
,

where ̂𝜙 is the OLS estimator and 𝑠𝑒( ̂𝜙) is the homoskedasticity-only standard error.

Unfortunately, under 𝐻0 the time series regression assumptions are not satisfied because 𝑌𝑡 is
a random walk. The OLS estimator is not normally distributed, but is is consistent. It can
be shown that the t-statistic does not converge to a standard normal distribution. Instead, it
converges to the Dickey-Fuller distribution:

𝑍𝜙
𝐷⟶ 𝐷𝐹

−4 −2 0 2 4

0.
0

0.
4

0.
8

Cumulative distribution functions

DF distribution
Standard normal distribution

The critical values are much smaller:

0.01 0.025 0.05 0.1
𝒩(0, 1) -2.32 -1.96 -1.64 -1.28
𝐷𝐹 -3.43 -3.12 -2.86 -2.57
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More quantiles for the DF distribution can be obtained from the function qunitroot() from
the urca package.

We reject 𝐻0 if the t-statistic 𝑍𝜙 is smaller than the corresponding critical value from the
above table.

15.4.2 Augmented Dickey Fuller test

The assumption that Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝑢𝑡 in Equation 15.2 is i.i.d. is unreasonable in many
cases. It is more realistic that

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + … + 𝜙𝑝𝑌𝑡−𝑝 + 𝑢𝑡

for some lag order 𝑝. In this model, 𝑌𝑡 is nonstationary if ∑𝑝
𝑗=1 𝜙𝑗 = 1.

The equation can be rewritten as

Δ𝑌𝑡 = 𝑐 + 𝜓𝑌𝑡−1 + 𝜃1Δ𝑌𝑡−1 + … + 𝜃𝑝−1Δ𝑌𝑡−(𝑝−1) + 𝑢𝑡, (15.3)

where 𝜓 = ∑𝑝
𝑗=1 𝜙𝑗 − 1 and 𝜃𝑖 = − ∑𝑝

𝑗=𝑖+1 𝜙𝑗.

To test for nonstationarity, we formulate the null hypothesis 𝐻0 ∶ ∑𝑝
𝑗=1 𝜙𝑗 = 1, which is

equivalent to 𝐻0 ∶ 𝜓 = 0.

The t-statistic 𝑍𝜓 from Equation 15.3 converges under 𝐻0 to the DF distribution as well.
Therefore, we can reject the null hypothesis of nonstationarity, if 𝑍𝜓 is smaller than the
corresponding quantile from the DF distribution.

This test is called Augmented Dickey-Fuller test (ADF).

data(gdp, package="teachingdata")
data(gdpgr, package="teachingdata")
par(mfrow = c(2,2))
plot(gdp, main="Nominal GDP Germany")
plot(gdpgr, main = "Annual nominal GDP growth")
acf(gdp)
acf(gdpgr)

We use the ur.df() function from the urca package with the option type = "drift" to
compute the ADF test statistic.

library(urca)
ur.df(gdp, type = "drift", lags = 4)
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###############################################################
# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
###############################################################

The value of the test statistic is: 2.4235 7.8698

The ADF statistic 𝑍𝜓 is the fist value from the output. The critical value for 𝛼 = 0.05 is -2.86.
Hence, the ADF with 𝑝 = 4 does not reject the null hypothesis that GDP is nonstationary.

ur.df(gdpgr, type = "drift", lags = 4)

###############################################################
# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
###############################################################

The value of the test statistic is: -4.1546 8.6402

The ADF statistic with 𝑝 = 4 is below -2.86, and the ADF test rejects the null hypothesis that
GDP growth is nonstationary at the 5% significance level.

These results are in line with the observations from the ACF plots.
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15.5 R-codes

methods-sec15.R
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A OLS: Technical Details

This section provides technical details about the linear model and the OLS estimator.

A.1 Probability toolbox

We will use some results from probability theory. Let 𝑉 and 𝑊 be random variables vectors
(or random vectors with compatible dimensions).

1.) Law of the iterated expectation (LIE):

𝐸[𝑉 ] = 𝐸[𝐸[𝑉 |𝑊]].
See Stock and Watson Section 2.3.

2.) Conditioning theorem (CT):

𝐸[𝑊𝑉 |𝑊] = 𝑊𝐸[𝑉 |𝑊]
Moreover, 𝐸[𝑔(𝑊)𝑉 |𝑊] = 𝑔(𝑊)𝐸[𝑉 |𝑊] for any function 𝑔(⋅).

3.) Independence rule (IR):

If 𝑉 and 𝑊 are independent, then 𝐸[𝑉 ] = 𝐸[𝑉 |𝑊]. Moreover, if 𝑉 and 𝑊2 are independent,
then 𝐸[𝑉 |𝑊1] = 𝐸[𝑉 |𝑊1, 𝑊2].

4.) Functions of independent random variables:

If 𝑉 and 𝑊 are independent and 𝑔(⋅) and ℎ(⋅) are functions, then 𝑔(𝑉 ) and ℎ(𝑊) are inde-
pendent.
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5.) Cauchy-Schwarz inequality:

|𝐸[𝑉 𝑊]| ≤ √𝐸[𝑉 2]√𝐸[𝑊 2]
See Stock and Watson Appendix 18.2.

6.) Convergence in probability

The sequence 𝑊𝑛 convergence in probability to the constant 𝐶, written 𝑊𝑛
𝑝

→ 𝐶, if, for and
𝛿 > 0,

𝑃(|𝑊𝑛 − 𝐶| > 𝛿) → 0 (as 𝑛 → ∞).

If 𝑊𝑛 is a random vector or matrix, and 𝐶 is a deterministic vector or matrix, then 𝑊𝑛
𝑝

→ 𝐶
if each entry of 𝑊𝑛 − 𝐶 converges in probability to zero. 𝑊𝑛 is called consistent for 𝐶 if
𝑊𝑛

𝑝
→ 𝐶. A sufficient conditions for consistency is that both 𝐸[𝑊𝑛] → 𝐶 and 𝑉 𝑎𝑟[𝑊𝑛] → 0

as 𝑛 → ∞. See Stock and Watson Section 2.6 and 18.2.

7.) Law of large numbers

If 𝑊𝑛 is an i.i.d. sequence with 𝐸[𝑊 2
𝑛] < ∞ (or bounded second moment in each entry for

vectors/matrices), then
1
𝑛

𝑛
∑
𝑖=1

𝑊𝑛
𝑝

→ 𝐸[𝑊𝑛]

See Stock and Watson Section 2.6 and 18.2.

8.) Convergence in distribution:

Let 𝐹𝑛 be the cumulative distribution function (CDF) of 𝑊𝑛 and let 𝐺 be the CDF of 𝑉 . 𝑊𝑛

converges in distribution to 𝑉 , written 𝑊𝑛
𝑑→ 𝑉 , if 𝐹𝑛(𝑎) → 𝐺(𝑎) for all 𝑎 at which 𝐺 is

continuous. If 𝑉 is 𝒩(𝜇, Σ) distributed, we also write 𝑊𝑛
𝑑→ 𝒩(𝜇, Σ).

9.) Multivariate central limit theorem:

If 𝑊𝑛 is an i.i.d. sequence of vectors with bounded second moments in each entry, then

√𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑊𝑛 − 𝐸[𝑊𝑛]) 𝑑→ 𝒩(000, 𝑉 𝑎𝑟[𝑊𝑛]).

See Stock and Watson Section 19.2.
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10. Continuous Mapping Theorem

Let 𝑔(⋅) be a continuous function. If 𝑊𝑛
𝑝

→ 𝐶, then 𝑔(𝑊𝑛)
𝑝

→ 𝑔(𝐶). Also, if 𝑊𝑛
𝑑→ 𝐶, then

𝑔(𝑊𝑛) 𝑑→ 𝑔(𝐶). See Stock and Watson Section 18.2.

11. Slutsky’s Theorem

If 𝑉𝑛
𝑝

→ 𝐶 and 𝑊𝑛
𝑝

→ 𝐷, then 𝑉𝑛𝑊𝑛
𝑝

→ 𝐶𝐷. If 𝑉𝑛
𝑝

→ 𝐶 and 𝑊𝑛
𝑑→ 𝑊 , then 𝑉𝑛𝑊𝑛

𝑑→ 𝐶𝑊
See Stock and Watson Section 18.2.

A.2 Conditional Expectation

Inserting the model equation 𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 gives

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽|𝑋𝑋𝑋𝑖]⏟⏟⏟⏟⏟
(𝐶𝑇)= 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽

+ 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]⏟
(𝐴1)= 0

A.3 Weak exogeneity

(A1) and the law of iterated expectations (LIE) imply

𝐸[𝑢𝑖]
(𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]⏟

=0
] = 𝐸[0] = 0,

and the conditioning theorem (CT) yields

𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖𝑙) = 𝐸[𝑢𝑖𝑋𝑖𝑙] − 𝐸[𝑢𝑖]⏟
=0

𝐸[𝑋𝑖𝑙]

(𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖𝑋𝑖𝑙|𝑋𝑋𝑋𝑖]]
(𝐶𝑇 )= 𝐸[𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]⏟

=0
𝑋𝑖𝑙] = 0.

A.4 Strict exogeneity

The i.i.d. assumption (A2) implies that {(𝑌𝑖,𝑋𝑋𝑋′
𝑖, 𝑢𝑖), 𝑖 = 1, … , 𝑛} is an i.i.d. collection since

𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 is a function of a random sample, and functions of independent variables
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are independent as well. Therefore, 𝑢𝑖 and 𝑋𝑋𝑋𝑗 are independent for 𝑖 ≠ 𝑗, and (IR) implies
𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] = 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]. Then,

𝐸[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] (𝐴2)= 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]
(𝐴1)= 0.

and
𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑗𝑙) = 𝐸[𝑢𝑖𝑋𝑗𝑙]⏟

=0

− 𝐸[𝑢𝑖]⏟
=0

𝐸[𝑋𝑗𝑙] = 0.

A.5 Heteroskedasticity

𝑉 𝑎𝑟[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢2
𝑖 |𝑋𝑋𝑋] (𝐴2)= 𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖] =∶ 𝜎2
𝑖 = 𝜎2(𝑋𝑋𝑋𝑖).

A.6 No autocorrelation

(A2) implies that 𝑢𝑖 is independent of 𝑢𝑗 for 𝑖 ≠ 𝑗, and 𝐸[𝑢𝑖|𝑢𝑗,𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋] = 0, which
implies

𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋] (𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖𝑢𝑗|𝑢𝑗,𝑋𝑋𝑋]|𝑋𝑋𝑋] (𝐶𝑇 )= 𝐸[𝑢𝑗 𝐸[𝑢𝑖|𝑢𝑗,𝑋𝑋𝑋]⏟⏟⏟⏟⏟
=0

|𝑋𝑋𝑋] = 0,

and
𝐶𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 𝐸[𝑢𝑖𝑢𝑗]

(𝐿𝐼𝐸)= 𝐸[𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋]] = 0.
The conditional covariance matrix is

𝐷𝐷𝐷 ∶= 𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋] = 𝐸[𝑢𝑢𝑢𝑢𝑢𝑢′|𝑋𝑋𝑋] =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

A.7 Existence

𝑟𝑎𝑛𝑘(𝑋𝑋𝑋) = 𝑘 ⇔ 𝑟𝑎𝑛𝑘(𝑋𝑋𝑋′𝑋𝑋𝑋) = 𝑘 ⇔ 𝑋𝑋𝑋′𝑋𝑋𝑋 is invertible.

205



A.8 Unbiasedness

(A4) ensures that ̂𝛽𝛽𝛽 is well defined. The following decomposition is useful:
̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1(𝑋𝑋𝑋′𝑋𝑋𝑋)𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

The strict exogeneity implies 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] = 000, and

𝐸[ ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝐸[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋] (𝐶𝑇 )= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′ 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋]⏟
=000

= 000.

By the (LIE), 𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]] = 𝐸[𝛽𝛽𝛽] = 𝛽𝛽𝛽.

A.9 Conditional variance

Recall the matrix rule 𝑉 𝑎𝑟[𝐴𝐴𝐴𝑧𝑧𝑧] = 𝐴𝐴𝐴𝑉 𝑎𝑟[𝑧𝑧𝑧]𝐴𝐴𝐴′ if 𝑧𝑧𝑧 is a random vector and 𝐴𝐴𝐴 is a matrix. Then,

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝑉 𝑎𝑟[𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋]
= 𝑉 𝑎𝑟[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋]
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑉 𝑎𝑟[𝑢𝑢𝑢|𝑋𝑋𝑋]((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′)′

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.
(A5) implies 𝐷𝐷𝐷 = 𝜎2𝐼𝐼𝐼𝑛 and

𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1 = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

A.10 Consistency

Let 𝑄𝑄𝑄 ∶= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and
ΩΩΩ ∶= 𝐸[(𝑋𝑋𝑋𝑖𝑢𝑖)(𝑋𝑋𝑋𝑖𝑢𝑖)′] = 𝐸[𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖]𝑋𝑖𝑋′
𝑖 ] = 𝐸[𝜎2

𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].

By (A3) and the Cauchy-Schwarz inequality, the entries of 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 and (𝑋𝑋𝑋𝑖𝑢𝑖)(𝑋𝑋𝑋𝑖𝑢𝑖)′ have

bounded second moments, and by (A2) these entries form i.i.d. sequences. Hence, the condi-
tions for the Law of Large Numbers are satisfied, and we have

1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋 = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝑄𝑄𝑄,

1
𝑛𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 = 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖
𝑝

→ ΩΩΩ.
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Consequently,
𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 1

𝑛⏟
→0

( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1

( 1
𝑛𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋⏟

𝑝
→ΩΩΩ

)( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋⏟

𝑝
→𝑄𝑄𝑄

)
−1

,

which implies that 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]
𝑝

→ 000 by the Continuous Mapping Theorem and Slutsky’s Theorem.
Since ̂𝛽𝛽𝛽 is unbiased, the LIE implies 𝑉 𝑎𝑟[ ̂𝛽𝛽𝛽] → 000, and Chebyshev’s inequality implies that

̂𝛽𝛽𝛽
𝑝

→ 𝛽𝛽𝛽.

A.11 Asymptotic normality

Since 𝑋𝑋𝑋𝑖𝑢𝑖 is i.i.d. and has bounded second moments by (A2) and (A3), the Multivariate
Central Limit Theorem implies

1√𝑛𝑋𝑋𝑋′𝑢𝑢𝑢 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖
𝐷→ 𝒩(000,ΩΩΩ)

because 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 0 by (A1) and the LIE, and 𝑉 𝑎𝑟[𝑋𝑋𝑋𝑖𝑢𝑖] = ΩΩΩ. Then, by Slutsky’s Theorem
and the Continuous Mapping Theorem,

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = ( 1
𝑛𝑋𝑋𝑋′𝑋𝑋𝑋)

−1
( 1√𝑛𝑋𝑋𝑋′𝑢𝑢𝑢) 𝐷→ 𝑄𝑄𝑄−1𝒩(000,ΩΩΩ),

and the result follows from the fact that 𝑉 𝑎𝑟[𝑄𝑄𝑄−1𝒩(000,ΩΩΩ)] = 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.

Note that by the decomposition above,
√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = √𝑛(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢, which is a linear com-

bination of 𝑢𝑢𝑢. Since linear combinations of normal variables are normal,
√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) is normal

under (A6) condditional on 𝑋𝑋𝑋 with 𝐸[√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽)] = 000 by the unbiasedness, and

𝑉 𝑎𝑟[√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽)] = 𝑛𝐸[(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1] (𝐴5)= 𝜎2𝑄𝑄𝑄−1.
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